Spectral Theory and Geometry of Locally Symmetric Spaces
谱论与局部对称空间几何
基本信息
- 批准号:0072299
- 负责人:
- 金额:$ 7.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-15 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0072299Lizhen Ji Symmetric and locally symmetric spaces are important objects in mathematics and arise from many different subjects such as Lie group theory, representation theory, number theory, differential geometry, algebraic geometry, and dynamics. Many natural such spaces are noncompact. For example, the space of positive definite matrices of determinant one is a noncompact symmetric space, and the moduli space of all elliptic curves is a noncompact locally symmetric space of finite volume which is one example of Shimura curves and plays an important role in the recent solution of the last Fermat's theorem. To understand the geometry and analysis of such noncompact spaces, an important problem is to study their compactifications. One of the common themes of the four projects in this proposal is to understand refined structures of the compactifications and their relations to the spectral theory of the spaces. For example, for locally symmetric spaces, geodesics which are eventually distance minimizing can be used to study the compactifications and also to understand the generalized eigenfunctions of the continuous spectrum, specifically, the scattering matrices.Compactifications of symmetric spaces play an important role in understanding behaviors at infinity of the joint eigenfunctions of the invariant differential operators and the matrix coefficients of representations. The compactifications of globally and locally symmetric spaces have mainly be studied separately before, and an important feature of this proposal is to study compactifications of both types of spaces using a similar approach.Mathematicians study geometric shapes and their structures. Onesuch collection of shapes consists of objects called manifolds. If a drum is pictured as a particular type of manifold then thetones produced by the drum can be thought of as mathematicalobjects associated to the manifold. For a particularly importantcollection of drums there are two kinds of tones: the discrete (orisolated) ones and the continuous families. The PI intends to investigate a variety of mathematical structures on these drums or manifolds.
对称空间和局部对称空间是数学中的重要对象,并且来自于许多不同的学科,如李群理论,表示论,数论,微分几何,代数几何和动力学。 许多这样的自然空间是非紧的。例如,行列式1的正定矩阵空间是一个非紧对称空间,所有椭圆曲线的模空间是一个有限体积的非紧局部对称空间,这是志村曲线的一个例子,在最近的费马定理的解决方案中起着重要作用。 为了理解这种非紧空间的几何和分析,一个重要的问题是研究它们的紧化。 本计划中四个项目的共同主题之一是理解紧化的精细结构及其与空间谱理论的关系。例如,在局部对称空间中,距离最小化的测地线可以用来研究紧化,也可以用来理解连续谱的广义本征函数,特别是散射矩阵。对称空间的紧化在理解不变微分算子的联合本征函数和表示的矩阵系数在无穷远处的行为中起着重要的作用。 整体对称空间和局部对称空间的紧化以前主要是分别研究的,而这个建议的一个重要特点是用类似的方法研究这两种空间的紧化。数学家研究几何形状和它们的结构。 这样的形状集合由称为流形的对象组成。如果一个鼓被描绘成一种特殊类型的流形,那么由鼓产生的音调可以被认为是与流形相关的物质对象。 对于一个特别重要的收集鼓有两种音调:离散(或孤立)的和连续的家庭。PI打算研究这些鼓或歧管上的各种数学结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lizhen Ji其他文献
Historical development of Teichmüller theory
- DOI:
10.1007/s00407-012-0104-y - 发表时间:
2012-06-28 - 期刊:
- 影响因子:0.700
- 作者:
Lizhen Ji;Athanase Papadopoulos - 通讯作者:
Athanase Papadopoulos
A parallel multi-module deep reinforcement learning algorithm for stock trading
一种用于股票交易的并行多模块深度强化学习算法
- DOI:
10.1016/j.neucom.2021.04.005 - 发表时间:
2021-08 - 期刊:
- 影响因子:6
- 作者:
Cong Ma;Jiangshe Zhang;Junmin Liu;Lizhen Ji;Fei Gao - 通讯作者:
Fei Gao
Pointwise bounds for L 2 eigenfunctions on locally symmetric spaces
- DOI:
10.1007/s10455-008-9116-x - 发表时间:
2008-04-29 - 期刊:
- 影响因子:0.700
- 作者:
Lizhen Ji;Andreas Weber - 通讯作者:
Andreas Weber
Galois’s theory of ambiguity and its impacts
- DOI:
10.1007/s00407-024-00341-5 - 发表时间:
2024-12-24 - 期刊:
- 影响因子:0.700
- 作者:
Lizhen Ji - 通讯作者:
Lizhen Ji
Fefferman ’ s Hypersurface Measure and Volume Approximation Problems
费弗曼的超曲面测量和体积近似问题
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Purvi Gupta;David E Barrett;Daniel M Professor Burns;Lizhen Ji;Mattias Professor;Venkatesh K Jonsson;T. S. Nagar A C K N O W L E D G M E N - 通讯作者:
T. S. Nagar A C K N O W L E D G M E N
Lizhen Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lizhen Ji', 18)}}的其他基金
The Legacy of Bernhard Riemann After One Hundred and Fifty Years
一百五十年后伯恩哈德·黎曼的遗产
- 批准号:
1534213 - 财政年份:2015
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Geometric Analysis on Moduli Spaces of Riemann Surfaces and Locally Symmetric Spaces
黎曼曲面模空间和局部对称空间的几何分析
- 批准号:
1104696 - 财政年份:2011
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Conference - The 2010 Graduate Student Topology and Geometry Conference to be held Spring 2010 at the University of Michigan in Ann Arbor
会议 - 2010 年研究生拓扑和几何会议将于 2010 年春季在安娜堡密歇根大学举行
- 批准号:
1007305 - 财政年份:2010
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Geometry and Physics; Edinburgh, Scotland, UK
几何和物理;
- 批准号:
0908585 - 财政年份:2009
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Geometry and Analysis of Locally Symmetric Spaces and Moduli Spaces of Riemann Surfaces
黎曼曲面局部对称空间和模空间的几何与分析
- 批准号:
0905283 - 财政年份:2009
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Conference on Geometric Analysis: Present and Future; Cambridge, MA, August 2008
几何分析会议:现在和未来;
- 批准号:
0706214 - 财政年份:2008
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Compactifications of Symmetric Spaces, Buildings and S-Arithmetic Groups, and Integral Novikov Conjecture
对称空间、建筑物和 S 算术群的紧化以及积分诺维科夫猜想
- 批准号:
0604878 - 财政年份:2006
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Large Scale Geometry and Compactifications of Arithmetic Groups, Symmetric Spaces and Buildings
大尺度几何和算术群、对称空间和建筑物的紧化
- 批准号:
0405884 - 财政年份:2004
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Potential Theory on and Compactifications of Lie Groups and Euclidean Buildings
李群和欧几里德建筑的势理论和紧化
- 批准号:
9704434 - 财政年份:1997
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407427 - 财政年份:1994
- 资助金额:
$ 7.21万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Combinatorial Algebraic Geometry for Spectral Theory and Galois Groups
谱论和伽罗瓦群的组合代数几何
- 批准号:
2201005 - 财政年份:2022
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
- 批准号:
2153561 - 财政年份:2021
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
- 批准号:
1854204 - 财政年份:2019
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
- 批准号:
1854299 - 财政年份:2019
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Smooth Geometry, Spectral Theory, and Data: Learning and Representing Projections of Complex Systems
FRG:协作研究:非光滑几何、谱理论和数据:学习和表示复杂系统的投影
- 批准号:
1854383 - 财政年份:2019
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
Geometry in string theory and spectral theory
弦论和谱论中的几何
- 批准号:
18K03657 - 财政年份:2018
- 资助金额:
$ 7.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canada Research Chair in Geometry and Spectral Theory
加拿大几何与谱理论研究主席
- 批准号:
1000210402-2008 - 财政年份:2013
- 资助金额:
$ 7.21万 - 项目类别:
Canada Research Chairs
Geometry of discrete spaces and spectral theory of non-local operators
离散空间几何与非局部算子谱理论
- 批准号:
224063881 - 财政年份:2012
- 资助金额:
$ 7.21万 - 项目类别:
Research Grants
Canada Research Chair in Geometry and Spectral Theory
加拿大几何与谱理论研究主席
- 批准号:
1000210402-2008 - 财政年份:2012
- 资助金额:
$ 7.21万 - 项目类别:
Canada Research Chairs
Canada Research Chair in Geometry and Spectral Theory
加拿大几何与谱理论研究主席
- 批准号:
1000210402-2008 - 财政年份:2011
- 资助金额:
$ 7.21万 - 项目类别:
Canada Research Chairs