Geometry and Physics; Edinburgh, Scotland, UK
几何和物理;
基本信息
- 批准号:0908585
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract:There have been interactions between mathematics and physics.One important example is the interaction between the theory of general relativity and Riemannian geometry. Other important examples include interactions between Yang-Mills gauge theory and connections on principal bundles, Higgs bosons and Higgs bundles (and Hitchin fibrations), string theory and algebraic geometry. Indeed, string theory has revolutionized the field of algebraic geometry, in particular, the enumerative algebraic geometry related to the moduli space of curves, and the Hitchin fibrations have also unexpectedly been used to prove the fundamental Lemma in the celebrated Langlands program in the theory of automorphic forms and representation theory.The conference ``Geometry and Physics: Atiyah80" will review the most recentdevelopments in such interactions with talks by leading experts from around the world.The marriage between mathematics and physics has been both long lastingand fruitful. Many important fields of modern mathematics have been directly motivated by applications in physics and mechanics,and physics can not be described accurately and effectivelywithout mathematics. Indeed, mathematics has played a crucial role in formulating properly and establishing rigorously physics theories, and in turn,developments in physics has provided mathematics with new motivations and unexpected problems. All these interactions inspired the famous physicist Eugene Wigner, a Nobel Laureate, to make the celebrated statement "The unreasonable effectiveness of mathematicsin natural sciences".This conference will also features a public event: The Higgs boson: what, why, how?
摘要:数学与物理之间一直存在着相互作用,广义相对论与黎曼几何之间的相互作用就是一个重要的例子。其他重要的例子包括杨-米尔斯规范理论与主丛、希格斯玻色子和希格斯丛(以及希钦纤维化)、弦理论和代数几何之间的相互作用。实际上,弦理论已经彻底改变了代数几何领域,特别是与曲线的模空间相关的枚举代数几何,希钦纤维化也意外地被用来证明自守形式理论和表示论中著名的朗兰兹纲领中的基本引理。Atiyah 80”将回顾这种互动的最新发展与来自世界各地的领先专家的谈话。数学和物理学之间的婚姻既持久又富有成果。 现代数学的许多重要领域都是由物理学和力学中的应用所直接推动的,而物理学的准确有效描述离不开数学。事实上,数学在正确地制定和建立严格的物理理论方面发挥了至关重要的作用,反过来,物理学的发展为数学提供了新的动力和意想不到的问题。所有这些相互作用激发了著名物理学家、诺贝尔奖获得者尤金维格纳(Eugene Wigner)发表了著名的声明“希格斯玻色子在自然科学中的不合理有效性”。本次会议还将举办一个公共活动:希格斯玻色子:什么,为什么,如何?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lizhen Ji其他文献
Historical development of Teichmüller theory
- DOI:
10.1007/s00407-012-0104-y - 发表时间:
2012-06-28 - 期刊:
- 影响因子:0.700
- 作者:
Lizhen Ji;Athanase Papadopoulos - 通讯作者:
Athanase Papadopoulos
A parallel multi-module deep reinforcement learning algorithm for stock trading
一种用于股票交易的并行多模块深度强化学习算法
- DOI:
10.1016/j.neucom.2021.04.005 - 发表时间:
2021-08 - 期刊:
- 影响因子:6
- 作者:
Cong Ma;Jiangshe Zhang;Junmin Liu;Lizhen Ji;Fei Gao - 通讯作者:
Fei Gao
Pointwise bounds for L 2 eigenfunctions on locally symmetric spaces
- DOI:
10.1007/s10455-008-9116-x - 发表时间:
2008-04-29 - 期刊:
- 影响因子:0.700
- 作者:
Lizhen Ji;Andreas Weber - 通讯作者:
Andreas Weber
Galois’s theory of ambiguity and its impacts
- DOI:
10.1007/s00407-024-00341-5 - 发表时间:
2024-12-24 - 期刊:
- 影响因子:0.700
- 作者:
Lizhen Ji - 通讯作者:
Lizhen Ji
Fefferman ’ s Hypersurface Measure and Volume Approximation Problems
费弗曼的超曲面测量和体积近似问题
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Purvi Gupta;David E Barrett;Daniel M Professor Burns;Lizhen Ji;Mattias Professor;Venkatesh K Jonsson;T. S. Nagar A C K N O W L E D G M E N - 通讯作者:
T. S. Nagar A C K N O W L E D G M E N
Lizhen Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lizhen Ji', 18)}}的其他基金
The Legacy of Bernhard Riemann After One Hundred and Fifty Years
一百五十年后伯恩哈德·黎曼的遗产
- 批准号:
1534213 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Geometric Analysis on Moduli Spaces of Riemann Surfaces and Locally Symmetric Spaces
黎曼曲面模空间和局部对称空间的几何分析
- 批准号:
1104696 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Conference - The 2010 Graduate Student Topology and Geometry Conference to be held Spring 2010 at the University of Michigan in Ann Arbor
会议 - 2010 年研究生拓扑和几何会议将于 2010 年春季在安娜堡密歇根大学举行
- 批准号:
1007305 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Geometry and Analysis of Locally Symmetric Spaces and Moduli Spaces of Riemann Surfaces
黎曼曲面局部对称空间和模空间的几何与分析
- 批准号:
0905283 - 财政年份:2009
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Conference on Geometric Analysis: Present and Future; Cambridge, MA, August 2008
几何分析会议:现在和未来;
- 批准号:
0706214 - 财政年份:2008
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Compactifications of Symmetric Spaces, Buildings and S-Arithmetic Groups, and Integral Novikov Conjecture
对称空间、建筑物和 S 算术群的紧化以及积分诺维科夫猜想
- 批准号:
0604878 - 财政年份:2006
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Large Scale Geometry and Compactifications of Arithmetic Groups, Symmetric Spaces and Buildings
大尺度几何和算术群、对称空间和建筑物的紧化
- 批准号:
0405884 - 财政年份:2004
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Spectral Theory and Geometry of Locally Symmetric Spaces
谱论与局部对称空间几何
- 批准号:
0072299 - 财政年份:2000
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Potential Theory on and Compactifications of Lie Groups and Euclidean Buildings
李群和欧几里德建筑的势理论和紧化
- 批准号:
9704434 - 财政年份:1997
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407427 - 财政年份:1994
- 资助金额:
$ 1.75万 - 项目类别:
Fellowship Award
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Edinburgh Nuclear Physics Consolidated Grant 2024-27
爱丁堡核物理综合赠款 2024-27
- 批准号:
ST/Y000293/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
- 批准号:
ST/X005984/1 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
- 批准号:
ST/W000482/1 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
- 批准号:
ST/V001051/1 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
SoftWare InFrastructure and Technology for High Energy Physics experiments (2020) at the University of Edinburgh
爱丁堡大学高能物理实验软件基础设施和技术 (2020)
- 批准号:
ST/V006045/1 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
STFC Edinburgh Physics 2019 DTP
STFC 爱丁堡物理 2019 DTP
- 批准号:
ST/T506060/1 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Training Grant
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
- 批准号:
ST/S000828/1 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
- 批准号:
ST/P004008/1 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
- 批准号:
ST/N000269/1 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
- 批准号:
ST/L005824/1 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant