Compactifications of Symmetric Spaces, Buildings and S-Arithmetic Groups, and Integral Novikov Conjecture

对称空间、建筑物和 S 算术群的紧化以及积分诺维科夫猜想

基本信息

项目摘要

Arithmetic groups arise naturally and have played a important role in many areas of mathematics such as number theory, geometry and topology. The familiar groups such as Z and SL(2, Z) are arithmetic groups. A larger class consists of S-arithmetic groups such as SL(2, Z[1/p]). In this proposal, the IP plans to study the large scale geometry of S-arithmetic groups and to prove the integral Novikov conjecture in surgery theory and K-theory for them. Since many natural S-arithmetic groups such as SL(n, Z[1/p]) contain nontrivial torsion elements, this proposal emphasizes a generalized integral Novikov conjecture. S-arithemtic groups act naturally on products of symmetric spaces and Bruhat-Tits buildings. The PI also proposes to study compactifications of Bruhat-Tits buildings. Another closely related class is the class of mapping class groups, which act on the Teichmuller spaces. The PI also plans to study the integral Novikov conjecture for the mapping class groups by using suitable compactifications of the Teichmuller spaces. Symmetry is a fundamental notion in science and art. In fact, it has played a pivotal role in modern physics. Among infinite discrete groups, arithmetic groups are special and important. For example, the groups underlying the symmetry of tiles, wallpapers and crystals form a class of arithmetic groups. Due to their connections with many different areas, arithmetic groups have been intensively studied and applied with success. A natural generalization of the class of arithmetic groups is the class of S-arithmetic groups. This proposal will study the large scale geometry of S-arithmetic groups and prove an important conjecture in topology, Novikov conjecture, for them.
算术群是自然产生的,在数论、几何和拓扑学等许多数学领域都发挥了重要作用。我们熟悉的群如Z和SL(2, Z)是等差群。一个更大的类由s算术群组成,如SL(2, Z[1/p])。在本课题中,IP计划研究s -算术群的大尺度几何,并为它们证明外科理论和k理论中的积分Novikov猜想。由于许多自然s算术群如SL(n, Z[1/p])包含非平凡扭转元,因此本文强调广义积分Novikov猜想。s -算术群自然地作用于对称空间和Bruhat-Tits建筑的产物上。PI还建议研究Bruhat-Tits建筑的密实性。另一个密切相关的类是映射类群的类,它们作用于Teichmuller空间。PI还计划利用适当的Teichmuller空间紧化来研究映射类群的积分Novikov猜想。对称是科学和艺术中的一个基本概念。事实上,它在现代物理学中起着举足轻重的作用。在无限离散群中,算术群是一个特殊而重要的问题。例如,构成瓷砖、壁纸和水晶对称性的群构成了一类算术群。由于算术群与许多不同领域的联系,人们对它们进行了深入的研究,并成功地应用了它们。等差群类的自然推广是s等差群类。本文将研究s -算术群的大尺度几何,并为它们证明拓扑学中的一个重要猜想——诺维科夫猜想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lizhen Ji其他文献

Historical development of Teichmüller theory
  • DOI:
    10.1007/s00407-012-0104-y
  • 发表时间:
    2012-06-28
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Lizhen Ji;Athanase Papadopoulos
  • 通讯作者:
    Athanase Papadopoulos
A parallel multi-module deep reinforcement learning algorithm for stock trading
一种用于股票交易的并行多模块深度强化学习算法
  • DOI:
    10.1016/j.neucom.2021.04.005
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Cong Ma;Jiangshe Zhang;Junmin Liu;Lizhen Ji;Fei Gao
  • 通讯作者:
    Fei Gao
Pointwise bounds for L 2 eigenfunctions on locally symmetric spaces
Galois’s theory of ambiguity and its impacts
Fefferman ’ s Hypersurface Measure and Volume Approximation Problems
费弗曼的超曲面测量和体积近似问题
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Purvi Gupta;David E Barrett;Daniel M Professor Burns;Lizhen Ji;Mattias Professor;Venkatesh K Jonsson;T. S. Nagar A C K N O W L E D G M E N
  • 通讯作者:
    T. S. Nagar A C K N O W L E D G M E N

Lizhen Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lizhen Ji', 18)}}的其他基金

The Legacy of Bernhard Riemann After One Hundred and Fifty Years
一百五十年后伯恩哈德·黎曼的遗产
  • 批准号:
    1534213
  • 财政年份:
    2015
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Standard Grant
Geometric Analysis on Moduli Spaces of Riemann Surfaces and Locally Symmetric Spaces
黎曼曲面模空间和局部对称空间的几何分析
  • 批准号:
    1104696
  • 财政年份:
    2011
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Standard Grant
Conference - The 2010 Graduate Student Topology and Geometry Conference to be held Spring 2010 at the University of Michigan in Ann Arbor
会议 - 2010 年研究生拓扑和几何会议将于 2010 年春季在安娜堡密歇根大学举行
  • 批准号:
    1007305
  • 财政年份:
    2010
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Standard Grant
Geometry and Physics; Edinburgh, Scotland, UK
几何和物理;
  • 批准号:
    0908585
  • 财政年份:
    2009
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Standard Grant
Geometry and Analysis of Locally Symmetric Spaces and Moduli Spaces of Riemann Surfaces
黎曼曲面局部对称空间和模空间的几何与分析
  • 批准号:
    0905283
  • 财政年份:
    2009
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Standard Grant
Conference on Geometric Analysis: Present and Future; Cambridge, MA, August 2008
几何分析会议:现在和未来;
  • 批准号:
    0706214
  • 财政年份:
    2008
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Standard Grant
Large Scale Geometry and Compactifications of Arithmetic Groups, Symmetric Spaces and Buildings
大尺度几何和算术群、对称空间和建筑物的紧化
  • 批准号:
    0405884
  • 财政年份:
    2004
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Standard Grant
Spectral Theory and Geometry of Locally Symmetric Spaces
谱论与局部对称空间几何
  • 批准号:
    0072299
  • 财政年份:
    2000
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Standard Grant
Potential Theory on and Compactifications of Lie Groups and Euclidean Buildings
李群和欧几里德建筑的势理论和紧化
  • 批准号:
    9704434
  • 财政年份:
    1997
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9407427
  • 财政年份:
    1994
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Continuing Grant
Coding theory and Design theory for probability measures on symmetric spaces
对称空间概率测度的编码理论和设计理论
  • 批准号:
    23KJ1641
  • 财政年份:
    2023
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Comprehensive study of various geometries with harmonic maps to symmetric spaces as a core
以对称空间调和映射为核心的各种几何学的综合研究
  • 批准号:
    22K03304
  • 财政年份:
    2022
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2022
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
  • 批准号:
    RGPIN-2019-03964
  • 财政年份:
    2022
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric analysis of convolution operators on symmetric spaces and its applications to integral geometry and inverse problems
对称空间上卷积算子的几何分析及其在积分几何和反问题中的应用
  • 批准号:
    21K03264
  • 财政年份:
    2021
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
  • 批准号:
    RGPIN-2019-03964
  • 财政年份:
    2021
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
  • 批准号:
    RGPIN-2018-04784
  • 财政年份:
    2021
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Discovery Grants Program - Individual
At Infinity of Symmetric Spaces
在无限对称空间
  • 批准号:
    441425994
  • 财政年份:
    2020
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Priority Programmes
Submanifold theory related to the twistor space of quaternionic symmetric spaces
与四元对称空间扭量空间相关的子流形理论
  • 批准号:
    20K03575
  • 财政年份:
    2020
  • 资助金额:
    $ 11.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了