Geometry and Analysis of Locally Symmetric Spaces and Moduli Spaces of Riemann Surfaces

黎曼曲面局部对称空间和模空间的几何与分析

基本信息

项目摘要

This proposal aims to study analysis and geometry of locally symmetric spaces and the moduli space of Riemann surfaces.Riemann surfaces with canonical metrics are important examples of locally symmetric spaces. Though their moduli spaces are not locally symmetric spaces in general, it has been recognized for a long time that they share many similar properties with locally symmetric spaces.Indeed, many topological properties of the moduli spaces have been found by following this principle. This proposal proposes to pursue further the analogues between them and understand and contribute more to common properties of locally symmetric spaces and the moduli spaces of Riemann surfaces.For example, the spectral theory of locally symmetric spaces is fundamental in automorphic forms and the celebrated Langlands program, and one project of this proposal is to understand the spectral theory and the geometric scattering theory of the moduli spaces of Riemann surfaces with respect to some canonical complete Riemannian metrics.Another project is to understand the Gauss-Bonnet formula and the index theory of the moduli spaces. The reduction theory for arithmetic groups is crucial for understanding locally symmetric spaces and quadratic forms, and this proposal also proposes to study analogous reduction theory for the moduli spaces of Riemann surfaces.Symmetry is a very important concept and has played a fundamental role in science and art. It is not only effective but also beautiful.For example, many basic laws in physics and nature are derived from the principle of symmetry, and beautiful forms and designs also follow the principle of symmetry.The mathematical language of symmetry is group theory and related symmetric spaces. Probably the most symmetric space is the Euclidean space.Indeed it is one of the important class of spaces called symmetric spaces, which include the hyperbolic spaces and spheres.Quotients of symmetric spaces are called locally symmetric spaces and they are closely related to another important class of spaces in mathematics, moduli spaces which classify mathematical objects.
这个建议的目的是研究局部对称空间的分析和几何以及黎曼曲面的模空间,具有标准度量的黎曼曲面是局部对称空间的重要例子。虽然它们的模空间一般不是局部对称空间,但人们一直认为它们与局部对称空间有许多相似的性质,实际上,根据这一原理,模空间的许多拓扑性质已经被发现。这一建议旨在进一步研究它们之间的相似性,理解和促进局部对称空间和黎曼曲面模空间的共同性质,例如,局部对称空间的谱理论是自守形式的基础,著名的Langlands纲领,这个建议的一个项目是理解黎曼曲面模空间的谱理论和几何散射理论,完整的黎曼度量。另一个项目是理解高斯-博内公式和模空间的指数理论。算术群的约化理论对于理解局部对称空间和二次型是至关重要的,该提议还建议研究黎曼曲面模空间的类似约化理论。对称性是一个非常重要的概念,在科学和艺术中起着基础性的作用。它不仅有效而且美观。例如,物理学和自然界的许多基本定律都是从对称性原理推导出来的,美丽的造型和设计也遵循对称性原理,对称性的数学语言就是群论和相关的对称空间。也许最对称的空间是欧几里德空间。事实上,它是一类重要的空间称为对称空间,其中包括双曲空间和领域。商的对称空间被称为局部对称空间,他们是密切相关的另一类重要的空间在数学,模空间分类数学对象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lizhen Ji其他文献

Historical development of Teichmüller theory
  • DOI:
    10.1007/s00407-012-0104-y
  • 发表时间:
    2012-06-28
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Lizhen Ji;Athanase Papadopoulos
  • 通讯作者:
    Athanase Papadopoulos
A parallel multi-module deep reinforcement learning algorithm for stock trading
一种用于股票交易的并行多模块深度强化学习算法
  • DOI:
    10.1016/j.neucom.2021.04.005
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Cong Ma;Jiangshe Zhang;Junmin Liu;Lizhen Ji;Fei Gao
  • 通讯作者:
    Fei Gao
Pointwise bounds for L 2 eigenfunctions on locally symmetric spaces
Galois’s theory of ambiguity and its impacts
Fefferman ’ s Hypersurface Measure and Volume Approximation Problems
费弗曼的超曲面测量和体积近似问题
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Purvi Gupta;David E Barrett;Daniel M Professor Burns;Lizhen Ji;Mattias Professor;Venkatesh K Jonsson;T. S. Nagar A C K N O W L E D G M E N
  • 通讯作者:
    T. S. Nagar A C K N O W L E D G M E N

Lizhen Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lizhen Ji', 18)}}的其他基金

The Legacy of Bernhard Riemann After One Hundred and Fifty Years
一百五十年后伯恩哈德·黎曼的遗产
  • 批准号:
    1534213
  • 财政年份:
    2015
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Standard Grant
Geometric Analysis on Moduli Spaces of Riemann Surfaces and Locally Symmetric Spaces
黎曼曲面模空间和局部对称空间的几何分析
  • 批准号:
    1104696
  • 财政年份:
    2011
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Standard Grant
Conference - The 2010 Graduate Student Topology and Geometry Conference to be held Spring 2010 at the University of Michigan in Ann Arbor
会议 - 2010 年研究生拓扑和几何会议将于 2010 年春季在安娜堡密歇根大学举行
  • 批准号:
    1007305
  • 财政年份:
    2010
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Standard Grant
Geometry and Physics; Edinburgh, Scotland, UK
几何和物理;
  • 批准号:
    0908585
  • 财政年份:
    2009
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Standard Grant
Conference on Geometric Analysis: Present and Future; Cambridge, MA, August 2008
几何分析会议:现在和未来;
  • 批准号:
    0706214
  • 财政年份:
    2008
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Standard Grant
Compactifications of Symmetric Spaces, Buildings and S-Arithmetic Groups, and Integral Novikov Conjecture
对称空间、建筑物和 S 算术群的紧化以及积分诺维科夫猜想
  • 批准号:
    0604878
  • 财政年份:
    2006
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Standard Grant
Large Scale Geometry and Compactifications of Arithmetic Groups, Symmetric Spaces and Buildings
大尺度几何和算术群、对称空间和建筑物的紧化
  • 批准号:
    0405884
  • 财政年份:
    2004
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Standard Grant
Spectral Theory and Geometry of Locally Symmetric Spaces
谱论与局部对称空间几何
  • 批准号:
    0072299
  • 财政年份:
    2000
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Standard Grant
Potential Theory on and Compactifications of Lie Groups and Euclidean Buildings
李群和欧几里德建筑的势理论和紧化
  • 批准号:
    9704434
  • 财政年份:
    1997
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9407427
  • 财政年份:
    1994
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Fellowship Award

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Locally adaptive scale optimization for hyper-scale terrain analysis
用于超尺度地形分析的局部自适应尺度优化
  • 批准号:
    548084-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A Gender Analysis of International Migrant During the Pandemic : A Case Study of The Locally Employed Japanese Women Working in the Hotel Industry
大流行期间国际移民的性别分析:以在酒店业工作的当地日本女性为例
  • 批准号:
    21K20193
  • 财政年份:
    2021
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Chemical composition analysis of locally made/used ceramics by neutron activation analysis to establish a high-resolution approach to the study of history of local economic development
通过中子活化分析对当地制造/使用的陶瓷进行化学成分分析,为研究当地经济发展历史建立高分辨率方法
  • 批准号:
    21K18379
  • 财政年份:
    2021
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Locally adaptive scale optimization for hyper-scale terrain analysis
用于超尺度地形分析的局部自适应尺度优化
  • 批准号:
    548084-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Locally adaptive scale optimization for hyper-scale terrain analysis
用于超尺度地形分析的局部自适应尺度优化
  • 批准号:
    548084-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Treatment monitoring in early and locally advanced breast cancer using circulating tumor DNA analysis
使用循环肿瘤 DNA 分析监测早期和局部晚期乳腺癌的治疗
  • 批准号:
    10304444
  • 财政年份:
    2020
  • 资助金额:
    $ 9.64万
  • 项目类别:
Pre-analytical factors affecting ctDNA analysis in early and locally advanced breast cancer
影响早期和局部晚期乳腺癌 ctDNA 分析的分析前因素
  • 批准号:
    9893681
  • 财政年份:
    2019
  • 资助金额:
    $ 9.64万
  • 项目类别:
Pre-analytical factors affecting ctDNA analysis in early and locally advanced breast cancer
影响早期和局部晚期乳腺癌 ctDNA 分析的分析前因素
  • 批准号:
    10304711
  • 财政年份:
    2019
  • 资助金额:
    $ 9.64万
  • 项目类别:
Pre-analytical factors affecting ctDNA analysis in early and locally advanced breast cancer
影响早期和局部晚期乳腺癌 ctDNA 分析的分析前因素
  • 批准号:
    10246983
  • 财政年份:
    2019
  • 资助金额:
    $ 9.64万
  • 项目类别:
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
  • 批准号:
    RGPIN-2015-04007
  • 财政年份:
    2019
  • 资助金额:
    $ 9.64万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了