Geometric Analysis on Moduli Spaces of Riemann Surfaces and Locally Symmetric Spaces
黎曼曲面模空间和局部对称空间的几何分析
基本信息
- 批准号:1104696
- 负责人:
- 金额:$ 18.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The moduli space of compact Riemann surfaces or compact Riemann surfaces with punctures is one of the most important spaces in mathematics and has been extensively studied in algebraic geometry, complex geometry, topology and mathematics physics. A closely related space is the Teichmueller space of Riemann surfaces where the mapping class group acts, and the quotient is equal to the moduli space of Riemann surfaces.The mapping class group is a basic group intensively studied in geometric group theory. The Teichmueller space and hence the moduli space of Riemann surfaces admit several natural Riemannian metrics such as the Weil-Petersson metric, the Ricci metric and Poincare type metrics. The main goal of this proposal is to study the spectral theory of the moduli space with respect to these Riemannian metrics and to understand its relations with the geometry and topology of the moduli space. Pursuing similarities between the moduli space and locally symmetric spaces, and between mapping class groups and arithmetic groups has been fruitful, the second goal of this proposal is to study some related problems for locally symmetric spaces. Specifically, the proposal consists of the following 4 projects:(1) Spectral theory of the incomplete Weil-Petersson metric on the moduli space.(2) Spectral theory for complete Riemannian metrics on the moduli space: geometric scattering theory.(3) Simplicial volume and spines of the moduli space.(4) Equivariant spines of symmetric spaces and L^p-spectral theory of locally symmetric spaces.A drum corresponds to a domain in the plane, and its tones correspond to the eigenvalues of the Laplace operator of the domain with the Dirichlet boundary condition. A perhaps naive question is how these eigenvalues are related to and reflect the shape of the drum, i.e., the geometry of the domain. For example, a very large drum has a low pitch. A famous question raised by Marc Kac in 1966 is "Can one hear the shape of a drum?". This question has been one of the motivating forces for the subject of spectral geometry. Domains are special examples of Riemannian manifolds, and mathematicians have been trying to understand geometry and spectral theory of various Riemannian manifolds, for example, closed surfaces inside the three dimensional Euclidean space. An important class of spaces comes from collections of mathematical objects sharing similar properties, the so-called moduli spaces. The main purpose of this proposal is to understand the geometry and spectral of moduli spaces of Riemann surfaces.
紧Riemann曲面或带穿孔的紧Riemann曲面的模空间是数学中最重要的空间之一,在代数几何、复几何、拓扑学和数学物理中有着广泛的研究。一个密切相关的空间是黎曼曲面的Teichmueller空间,映射类群作用于该空间,其商等于黎曼曲面的模空间,映射类群是几何群论中研究最多的一个基本群。Teichmueller空间和黎曼曲面的模空间允许一些自然的黎曼度量,如Weil-Petersson度量、Ricci度量和Poincare型度量。这个提议的主要目标是研究模空间关于这些黎曼度量的谱理论,并理解它与模空间的几何和拓扑的关系。由于模空间与局部对称空间、映射类群与算术群之间的相似性研究已经取得了一定的成果,本文的第二个目标是研究局部对称空间的相关问题。具体地说,该计划包括以下四个方面:(1)模空间上不完全Weil-Petersson度量的谱理论。(2)模空间上完备黎曼度量的谱理论:几何散射理论。(3)模空间的单形体体积和刺。(4)对称空间的等变刺与局部对称空间的L^p-谱理论,鼓对应于平面上的一个区域,鼓的音调对应于该区域的具有Dirichlet边界条件的拉普拉斯算子的特征值.一个也许天真的问题是这些特征值如何与鼓的形状相关并反映鼓的形状,即,域的几何形状。例如,一个非常大的鼓有一个低的音调。1966年,马克·卡茨(Marc Kac)提出了一个著名的问题:“人们能听到鼓的形状吗?".这个问题一直是动力之一的主题谱几何。Domain是黎曼流形的特殊例子,数学家一直试图理解各种黎曼流形的几何和谱理论,例如三维欧氏空间中的闭曲面。一类重要的空间来自于具有相似性质的数学对象的集合,即所谓的模空间。这个建议的主要目的是了解黎曼曲面的模空间的几何和谱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lizhen Ji其他文献
Historical development of Teichmüller theory
- DOI:
10.1007/s00407-012-0104-y - 发表时间:
2012-06-28 - 期刊:
- 影响因子:0.700
- 作者:
Lizhen Ji;Athanase Papadopoulos - 通讯作者:
Athanase Papadopoulos
A parallel multi-module deep reinforcement learning algorithm for stock trading
一种用于股票交易的并行多模块深度强化学习算法
- DOI:
10.1016/j.neucom.2021.04.005 - 发表时间:
2021-08 - 期刊:
- 影响因子:6
- 作者:
Cong Ma;Jiangshe Zhang;Junmin Liu;Lizhen Ji;Fei Gao - 通讯作者:
Fei Gao
Pointwise bounds for L 2 eigenfunctions on locally symmetric spaces
- DOI:
10.1007/s10455-008-9116-x - 发表时间:
2008-04-29 - 期刊:
- 影响因子:0.700
- 作者:
Lizhen Ji;Andreas Weber - 通讯作者:
Andreas Weber
Galois’s theory of ambiguity and its impacts
- DOI:
10.1007/s00407-024-00341-5 - 发表时间:
2024-12-24 - 期刊:
- 影响因子:0.700
- 作者:
Lizhen Ji - 通讯作者:
Lizhen Ji
Fefferman ’ s Hypersurface Measure and Volume Approximation Problems
费弗曼的超曲面测量和体积近似问题
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Purvi Gupta;David E Barrett;Daniel M Professor Burns;Lizhen Ji;Mattias Professor;Venkatesh K Jonsson;T. S. Nagar A C K N O W L E D G M E N - 通讯作者:
T. S. Nagar A C K N O W L E D G M E N
Lizhen Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lizhen Ji', 18)}}的其他基金
The Legacy of Bernhard Riemann After One Hundred and Fifty Years
一百五十年后伯恩哈德·黎曼的遗产
- 批准号:
1534213 - 财政年份:2015
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Conference - The 2010 Graduate Student Topology and Geometry Conference to be held Spring 2010 at the University of Michigan in Ann Arbor
会议 - 2010 年研究生拓扑和几何会议将于 2010 年春季在安娜堡密歇根大学举行
- 批准号:
1007305 - 财政年份:2010
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Geometry and Physics; Edinburgh, Scotland, UK
几何和物理;
- 批准号:
0908585 - 财政年份:2009
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Geometry and Analysis of Locally Symmetric Spaces and Moduli Spaces of Riemann Surfaces
黎曼曲面局部对称空间和模空间的几何与分析
- 批准号:
0905283 - 财政年份:2009
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Conference on Geometric Analysis: Present and Future; Cambridge, MA, August 2008
几何分析会议:现在和未来;
- 批准号:
0706214 - 财政年份:2008
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Compactifications of Symmetric Spaces, Buildings and S-Arithmetic Groups, and Integral Novikov Conjecture
对称空间、建筑物和 S 算术群的紧化以及积分诺维科夫猜想
- 批准号:
0604878 - 财政年份:2006
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Large Scale Geometry and Compactifications of Arithmetic Groups, Symmetric Spaces and Buildings
大尺度几何和算术群、对称空间和建筑物的紧化
- 批准号:
0405884 - 财政年份:2004
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Spectral Theory and Geometry of Locally Symmetric Spaces
谱论与局部对称空间几何
- 批准号:
0072299 - 财政年份:2000
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Potential Theory on and Compactifications of Lie Groups and Euclidean Buildings
李群和欧几里德建筑的势理论和紧化
- 批准号:
9704434 - 财政年份:1997
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407427 - 财政年份:1994
- 资助金额:
$ 18.55万 - 项目类别:
Fellowship Award
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
- 批准号:
23K03140 - 财政年份:2023
- 资助金额:
$ 18.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 18.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic and global analysis for integrable systems with irregular singularities and various aspects of the moduli space
具有不规则奇点和模空间各个方面的可积系统的渐近和全局分析
- 批准号:
20H01810 - 财政年份:2020
- 资助金额:
$ 18.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Moduli Spaces and Geometric Microlocal Analysis
模空间和几何微局域分析
- 批准号:
2041823 - 财政年份:2020
- 资助金额:
$ 18.55万 - 项目类别:
Continuing Grant
Moduli Spaces and Geometric Microlocal Analysis
模空间和几何微局域分析
- 批准号:
1905398 - 财政年份:2019
- 资助金额:
$ 18.55万 - 项目类别:
Continuing Grant
Development and its application of ultrasonic scattering techniques that enables simultaneous analysis of particle size distribution, elastic moduli, and surface properties
可同时分析粒度分布、弹性模量和表面特性的超声波散射技术的开发及其应用
- 批准号:
19H02776 - 财政年份:2019
- 资助金额:
$ 18.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric analysis on metrics of the moduli of punctured Riemann surfaces
穿孔黎曼曲面模量度量的几何分析
- 批准号:
18K03338 - 财政年份:2018
- 资助金额:
$ 18.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Analysis on HyperKahler Moduli Spaces
RUI:HyperKahler 模空间分析
- 批准号:
1811995 - 财政年份:2018
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Analysis of moduli structure of completely integrable systems and related geometry
完全可积系统的模结构及相关几何分析
- 批准号:
15H03628 - 财政年份:2015
- 资助金额:
$ 18.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry and Analysis of Moduli Spaces of Holomorphic Bundles
全纯丛模空间的几何与分析
- 批准号:
1406513 - 财政年份:2014
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant














{{item.name}}会员




