Inverse Spectral Problems in Riemannian Geometry
黎曼几何中的反谱问题
基本信息
- 批准号:0072534
- 负责人:
- 金额:$ 36.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0072534Principal Investigator: Carolyn S. GordonInverse spectral geometry is the study of the extent to which thegeometry of a surface or, more generally, of a Riemannianmanifold can be extracted from spectral data. The primaryspectral data associated to a compact Riemannian manifold are theeigenvalues of the Laplace-Beltrami operator. The investigatorspropose to apply recently developed methods to study the extentto which the eigenvalue spectrum determines the local geometry ofa compact Riemannian manifold. They will also ask the extent towhich additional spectral data such as the spectrum of theLaplacian acting on differential forms of various degreesdetermines the geometry of the manifold. Inverse spectralproblems will be considered on Riemannian orbifolds as well as onmanifolds; orbifolds are the most tractable singular spaces. Forthe Schrodinger operator "Laplacian plus potential", the problemof recovering the potential from spectral data will be studied inthe case of line bundles over tori. In analogy to the case ofplanar domains, the lowest eigenvalue of the Laplacian on acompact Riemannian manifold may be viewed as the fundamentaltone. The question of whether random Riemann surfaces have largefirst eigenvalue will be studied using connections betweenspectra of Riemann surfaces and spectra of graphs. Fornoncompact Riemannian manifolds, the primary spectral data arethe scattering poles; the investigators expect to exhibitcontinuous families of isopolar metrics.In spectroscopy, one attempts to recover the chemical compositionor the shape of an object from the characteristic frequencies oflight or sound emitted. In the case of a vibrating membrane suchas a drumhead, viewed mathematically as a bounded region in theplane, the spectrum of characteristic frequencies corresponds tothe mathematical notion of the Laplace spectrum. The Laplacespectrum is also defined for other geometric objects calledmanifolds which arise in mathematics and physics. Theinvestigators, along with Scott Wolpert, earlier constructed thefirst examples of differently shaped drumheads (planar regions)with the same spectrum. Planar regions can differ in theirglobal shape but locally are identical; i.e., if you look at asmall piece cut out from one of the regions, you can not tellwhich region it came from. Recently, the principal investigatordeveloped methods for constructing geometric objects with thesame Laplace spectrum but which differ in their local as well asglobal shape. These methods will be used to investigate whichlocal geometric properties of manifolds are not spectrallydetermined. Additional spectral problems will also be consideredsuch as the construction of surfaces of arbitrarily large volumebut having bounded fundamental tone.
摘要奖:DMS-0072534首席研究员:卡罗琳·S·戈登逆谱几何是研究从光谱数据中提取曲面或黎曼流形几何的程度的学科。与紧致黎曼流形相关的主谱数据是Laplace-Beltrami算子的特征值。研究人员建议应用最近发展的方法来研究特征值谱决定紧致黎曼流形的局部几何的程度。他们还将询问附加的光谱数据,如作用于不同程度的微分形式的拉普拉斯谱,在多大程度上决定了流形的几何形状。逆谱问题将被考虑在黎曼或流形上,或流形上;或或流形是最容易处理的奇异空间。对于薛定谔算符“拉普拉斯加位势”,在环面上线丛的情况下,将研究从光谱数据恢复位势的问题。与平面区域的情况类似,紧黎曼流形上拉普拉斯算子的最低本征值可视为基调。利用随机黎曼曲面的谱与图的谱之间的联系,研究随机黎曼曲面是否具有较大的第一本征值的问题。对于非紧致的黎曼流形,主要的光谱数据是散射极;研究人员期望展示连续的等极度量族。在光谱学中,人们试图从飞行或发出的声音的特征频率中恢复物体的化学成分或形状。在振动膜的情况下,如鼓头,在数学上被视为平面上的一个有界区域,特征频率的谱对应于拉普拉斯谱的数学概念。拉普拉斯谱也被定义为数学和物理中出现的其他几何对象,称为流形。早些时候,研究人员与斯科特·沃尔伯特一起构建了具有相同光谱的不同形状的鼓头(平面区域)的第一个例子。平面区域的整体形状可能不同,但局部是相同的;也就是说,如果你看着从其中一个区域切下的一小块,你不能说出它来自哪个区域。最近,主要的研究人员发展了构造具有相同拉普拉斯谱但其局部和全局形状不同的几何对象的方法。这些方法将被用来研究流形的哪些局部几何性质不是谱确定的。还将考虑其他谱问题,例如构造具有任意大体积但具有有界基调的曲面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Gordon其他文献
Hand Therapy Modalities Following Extensor Mechanism Surgery
- DOI:
10.1016/j.jhsa.2015.04.043 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Garet C. Comer;Carolyn Gordon;Jeffrey Yao - 通讯作者:
Jeffrey Yao
The Steklov Spectrum of Convex Polygonal Domains I: Spectral Finiteness
- DOI:
10.1007/s12220-025-01922-8 - 发表时间:
2025-02-06 - 期刊:
- 影响因子:1.500
- 作者:
Emily B. Dryden;Carolyn Gordon;Javier Moreno;Julie Rowlett;Carlos Villegas-Blas - 通讯作者:
Carlos Villegas-Blas
The inaudible geometry of nilmanifolds
- DOI:
10.1007/bf01231288 - 发表时间:
1993-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Dennis DeTurck;Herman Gluck;Carolyn Gordon;David Webb - 通讯作者:
David Webb
Carolyn Gordon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carolyn Gordon', 18)}}的其他基金
Workshop on spectral problems; July 2010
光谱问题研讨会;
- 批准号:
1005360 - 财政年份:2010
- 资助金额:
$ 36.29万 - 项目类别:
Standard Grant
Spectral and geometric problems in global analysis
全局分析中的谱和几何问题
- 批准号:
0605247 - 财政年份:2006
- 资助金额:
$ 36.29万 - 项目类别:
Continuing Grant
ONR/NSF/AWM Workshops for Women Graduate Students & Postdoctoral Mathematicians
ONR/NSF/AWM 女研究生研讨会
- 批准号:
9712827 - 财政年份:1998
- 资助金额:
$ 36.29万 - 项目类别:
Continuing Grant
Problems in Global Riemannian Geometry
全局黎曼几何问题
- 批准号:
9704369 - 财政年份:1997
- 资助金额:
$ 36.29万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Inverse Problems in Spectral Geometry
美法合作研究:谱几何反问题
- 批准号:
9415803 - 财政年份:1995
- 资助金额:
$ 36.29万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9404298 - 财政年份:1994
- 资助金额:
$ 36.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9296266 - 财政年份:1992
- 资助金额:
$ 36.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9101355 - 财政年份:1991
- 资助金额:
$ 36.29万 - 项目类别:
Continuing Grant
相似国自然基金
一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
- 批准号:LTGY23H220001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于spectral集和spectral拓扑若干问题研究
- 批准号:11661057
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
- 批准号:11473055
- 批准年份:2014
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit
光谱与逆散射理论的新进展-非线性问题与连续极限
- 批准号:
20K03667 - 财政年份:2020
- 资助金额:
$ 36.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Steklov eigenvalues of polygons and inverse spectral problems
多边形的 Steklov 特征值和逆谱问题
- 批准号:
526846-2018 - 财政年份:2018
- 资助金额:
$ 36.29万 - 项目类别:
University Undergraduate Student Research Awards
Inverse Problems and Spectral Theory for Elliptic Operators
椭圆算子的反问题和谱理论
- 批准号:
1500703 - 财政年份:2015
- 资助金额:
$ 36.29万 - 项目类别:
Continuing Grant
Conference on Inverse Problems and Spectral Theory, October 17-19, 2014
反问题和谱理论会议,2014 年 10 月 17-19 日
- 批准号:
1412493 - 财政年份:2014
- 资助金额:
$ 36.29万 - 项目类别:
Standard Grant
New development of inverse spectral problems for singular spaces
奇异空间反谱问题的新进展
- 批准号:
24654010 - 财政年份:2012
- 资助金额:
$ 36.29万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
RUI: Inverse Spectral Problems in One and Two Dimensions
RUI:一维和二维逆谱问题
- 批准号:
0209562 - 财政年份:2002
- 资助金额:
$ 36.29万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences, Using Spectral Data to Solve Inverse Problems, December 14-18, 2001
NSF/CBMS 数学科学区域会议,使用谱数据解决反问题,2001 年 12 月 14-18 日
- 批准号:
0085884 - 财政年份:2001
- 资助金额:
$ 36.29万 - 项目类别:
Standard Grant
Spectral Problems and Inverse Spectral Problems
谱问题和逆谱问题
- 批准号:
0296084 - 财政年份:2001
- 资助金额:
$ 36.29万 - 项目类别:
Continuing Grant
Spectral Problems and Inverse Spectral Problems
谱问题和逆谱问题
- 批准号:
0003268 - 财政年份:2000
- 资助金额:
$ 36.29万 - 项目类别:
Continuing grant
U.S.-India Cooperative Research: Spectral and Inverse Spectral Problems for Schroedinger Operators
美印合作研究:薛定谔算子的谱和逆谱问题
- 批准号:
9810322 - 财政年份:1998
- 资助金额:
$ 36.29万 - 项目类别:
Standard Grant














{{item.name}}会员




