Spectral and geometric problems in global analysis
全局分析中的谱和几何问题
基本信息
- 批准号:0605247
- 负责人:
- 金额:$ 20.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inverse spectral geometry is the study of the extent to which the geometry of a Riemannian manifold can be recovered from spectral data. The principal investigator, along with her research collaborators, will study Inverse spectral problems in both the compact and noncompact settings. For compact Riemannian manifolds, the natural spectral data are the eigenvalues of the Laplacian. To obtain information concerning Riemannian invariants that are not spectrally determined, constructions of isospectral manifolds will be investigated. Continuing joint work with E. Makover and D. Webb, the principal investigator will study the extent to which the spectrum of a Riemann surface determines its Jacobian. She and Webb, along with E. Dryden and S. Greenwald, will also consider inverse spectral results on orbifolds. For noncompact manifolds, natural spectral data include the scattering resonances and scattering phase. The principal investigator and Webb, along with P. Perry, will study of obstacles with the same scattering resonances and scattering phase. They will also study isopolar and isophasal potentials for the Schrodinger operator.In spectroscopy, one attempts to understand the chemical composition of an object such as a star from the characteristic frequencies of light emitted. Analogously, the question phrased by Mark Kac as "Can one hear the shape of a drum?" asks whether one can determine the shape of a vibrating membrane such as a drumhead from its characteristic frequencies of vibration. In earlier work, the principal investigator, along with D. Webb and S. Wolpert, constructed examples of polygonal shaped "membranes" (bounded domains in the plane) that have exactly the same characteristic frequencies, thus answering Kac's question in the negative. Kac's question generalizes to nonplanar surfaces and higher dimensional objects (Riemannian manifolds), with the analog of the characteristic frequencies being the Laplace spectrum. The principal investigator, along with her collaborators, will continue her investigation of the extent to which spectral data determines the geometry of a Riemannian manifold. Constructions of manifolds with the same spectrum will be studied to identify geometric properties that are not spectrally determined. Singular spaces (orbifolds) will also be considered.
逆谱几何是研究黎曼流形的几何在多大程度上可以从谱数据中恢复。 主要研究员,沿着与她的研究合作者,将研究逆谱问题在紧凑和非紧凑设置。 对于紧致黎曼流形,自然谱数据是拉普拉斯算子的特征值。 为了获得关于黎曼不变量的信息,不是谱确定的,将研究等谱流形的构造。 继续与E. Makover和D.韦伯,首席研究员将研究黎曼曲面的频谱在多大程度上决定其雅可比矩阵。 她和韦伯,沿着还有E。德莱登和S. Greenwald,也将考虑orbifolds的逆谱结果。 对于非紧流形,自然谱数据包括散射共振和散射相位。 首席研究员和韦伯,沿着与P.佩里,将研究具有相同散射共振和散射相位的障碍物。 他们还将研究薛定谔算符的等极和等相势。在光谱学中,人们试图从发射光的特征频率来理解物体(如星星)的化学成分。 类似地,马克·卡茨(Mark Kac)提出的问题是:“人们能听到鼓的形状吗?“的问题,是否可以确定振动膜的形状,如鼓面从其振动的特征频率。 在早期的工作中,主要研究者,沿着D. Webb和S. Wolpert,构造了多边形“膜”(平面中的有界域)的例子,它们具有完全相同的特征频率,从而否定了Kac的问题。 卡茨的问题推广到非平面表面和高维物体(黎曼流形),与模拟的特征频率是拉普拉斯频谱。 主要研究者,沿着与她的合作者,将继续她的调查在何种程度上光谱数据确定几何形状的黎曼流形。 将研究具有相同谱的流形的构造,以确定不是谱确定的几何性质。 奇异空间(orbifolds)也将被考虑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Gordon其他文献
Hand Therapy Modalities Following Extensor Mechanism Surgery
- DOI:
10.1016/j.jhsa.2015.04.043 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Garet C. Comer;Carolyn Gordon;Jeffrey Yao - 通讯作者:
Jeffrey Yao
The Steklov Spectrum of Convex Polygonal Domains I: Spectral Finiteness
- DOI:
10.1007/s12220-025-01922-8 - 发表时间:
2025-02-06 - 期刊:
- 影响因子:1.500
- 作者:
Emily B. Dryden;Carolyn Gordon;Javier Moreno;Julie Rowlett;Carlos Villegas-Blas - 通讯作者:
Carlos Villegas-Blas
The inaudible geometry of nilmanifolds
- DOI:
10.1007/bf01231288 - 发表时间:
1993-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Dennis DeTurck;Herman Gluck;Carolyn Gordon;David Webb - 通讯作者:
David Webb
Carolyn Gordon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carolyn Gordon', 18)}}的其他基金
Workshop on spectral problems; July 2010
光谱问题研讨会;
- 批准号:
1005360 - 财政年份:2010
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
Inverse Spectral Problems in Riemannian Geometry
黎曼几何中的反谱问题
- 批准号:
0072534 - 财政年份:2000
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
ONR/NSF/AWM Workshops for Women Graduate Students & Postdoctoral Mathematicians
ONR/NSF/AWM 女研究生研讨会
- 批准号:
9712827 - 财政年份:1998
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
Problems in Global Riemannian Geometry
全局黎曼几何问题
- 批准号:
9704369 - 财政年份:1997
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Inverse Problems in Spectral Geometry
美法合作研究:谱几何反问题
- 批准号:
9415803 - 财政年份:1995
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9404298 - 财政年份:1994
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9296266 - 财政年份:1992
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9101355 - 财政年份:1991
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
- 批准号:11071206
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
- 批准号:10771181
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
- 批准号:
2337630 - 财政年份:2024
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
Geometric approaches to quantum many body problems
量子多体问题的几何方法
- 批准号:
DE230100829 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别:
Discovery Early Career Researcher Award
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
- 批准号:
2247096 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别:
Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:
2304432 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
Geometric Boundary Value Problems in General Relativity
广义相对论中的几何边值问题
- 批准号:
2304966 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别:
Standard Grant
CAREER: Learning, testing, and hardness via extremal geometric problems
职业:通过极值几何问题学习、测试和硬度
- 批准号:
2145800 - 财政年份:2022
- 资助金额:
$ 20.95万 - 项目类别:
Continuing Grant
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
- 批准号:
RGPIN-2016-04274 - 财政年份:2022
- 资助金额:
$ 20.95万 - 项目类别:
Discovery Grants Program - Individual
Regularity of minimizers and pattern formation in geometric minimization problems
几何最小化问题中最小化器的正则性和模式形成
- 批准号:
RGPIN-2018-06295 - 财政年份:2022
- 资助金额:
$ 20.95万 - 项目类别:
Discovery Grants Program - Individual