Problems in Global Riemannian Geometry
全局黎曼几何问题
基本信息
- 批准号:9704369
- 负责人:
- 金额:$ 23.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704369 Gordon This project lies in the area of Riemannian geometry. More specifically, the investigator is to consider the structure of isopectral sets of metrics, the possible existence of metrics in Euclidean space with the same scattering behavior, constructions of isopectral metrics whose geometric properties differ in certain ways, and the extent to which the spectrum of a Schrodinger operator determines the potential. The spectral geometry of orbifolds, minimal hypersurfaces and their applications to the geometry of Ricci curvature in dimension three, and the Ricci flow on manifolds with boundary are also to be pursued. Riemannian manifolds are higher dimensional generalizations of curved surfaces. Such manifolds have well-known applications in theoretical physics. A Riemannian manifold possesses a notion of distance, or a metric. And by taking the derivative of the metric one can measure its curvature. The Laplace operator and its spectrum are a fundamental object associated to any Riemannian manifold. Much of this research project is concerned with the question "To what extent is the geometry of a Riemannian manifold determined by the spectrum of its Laplace operator?"
9704369戈登这个项目涉及黎曼几何领域。更具体地说,研究人员将考虑等谱度量集的结构,具有相同散射行为的欧氏空间中可能存在的度量,几何性质在某些方面不同的等谱度量的构造,以及薛定谔算子的谱决定势的程度。文中还讨论了orborold、极小超曲面的谱几何及其在三维Ricci曲率几何和带边界流形上的Ricci流中的应用。黎曼流形是曲面的高维推广。这种流形在理论物理中有着众所周知的应用。黎曼流形具有距离的概念或度量。通过求度规的导数,我们就可以测量它的曲率。拉普拉斯算子及其谱是任何黎曼流形的基本对象。这个研究项目的很大一部分是关于“黎曼流形的几何在多大程度上是由它的拉普拉斯算符的谱决定的?”
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Gordon其他文献
Hand Therapy Modalities Following Extensor Mechanism Surgery
- DOI:
10.1016/j.jhsa.2015.04.043 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Garet C. Comer;Carolyn Gordon;Jeffrey Yao - 通讯作者:
Jeffrey Yao
The Steklov Spectrum of Convex Polygonal Domains I: Spectral Finiteness
- DOI:
10.1007/s12220-025-01922-8 - 发表时间:
2025-02-06 - 期刊:
- 影响因子:1.500
- 作者:
Emily B. Dryden;Carolyn Gordon;Javier Moreno;Julie Rowlett;Carlos Villegas-Blas - 通讯作者:
Carlos Villegas-Blas
The inaudible geometry of nilmanifolds
- DOI:
10.1007/bf01231288 - 发表时间:
1993-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Dennis DeTurck;Herman Gluck;Carolyn Gordon;David Webb - 通讯作者:
David Webb
Carolyn Gordon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carolyn Gordon', 18)}}的其他基金
Workshop on spectral problems; July 2010
光谱问题研讨会;
- 批准号:
1005360 - 财政年份:2010
- 资助金额:
$ 23.38万 - 项目类别:
Standard Grant
Spectral and geometric problems in global analysis
全局分析中的谱和几何问题
- 批准号:
0605247 - 财政年份:2006
- 资助金额:
$ 23.38万 - 项目类别:
Continuing Grant
Inverse Spectral Problems in Riemannian Geometry
黎曼几何中的反谱问题
- 批准号:
0072534 - 财政年份:2000
- 资助金额:
$ 23.38万 - 项目类别:
Continuing Grant
ONR/NSF/AWM Workshops for Women Graduate Students & Postdoctoral Mathematicians
ONR/NSF/AWM 女研究生研讨会
- 批准号:
9712827 - 财政年份:1998
- 资助金额:
$ 23.38万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Inverse Problems in Spectral Geometry
美法合作研究:谱几何反问题
- 批准号:
9415803 - 财政年份:1995
- 资助金额:
$ 23.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9404298 - 财政年份:1994
- 资助金额:
$ 23.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9296266 - 财政年份:1992
- 资助金额:
$ 23.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9101355 - 财政年份:1991
- 资助金额:
$ 23.38万 - 项目类别:
Continuing Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
Workshop on Global Riemannian Geometry
全局黎曼几何研讨会
- 批准号:
0813659 - 财政年份:2008
- 资助金额:
$ 23.38万 - 项目类别:
Standard Grant
Global Riemannian Geometry and Analysis of curved spaces
全局黎曼几何与弯曲空间分析
- 批准号:
0706513 - 财政年份:2007
- 资助金额:
$ 23.38万 - 项目类别:
Standard Grant
Future directions in global Riemannian geometry.
全球黎曼几何的未来方向。
- 批准号:
0606626 - 财政年份:2006
- 资助金额:
$ 23.38万 - 项目类别:
Standard Grant
Global analysis of the heat kernels on Riemannian manifolds and graphs
黎曼流形和图上热核的全局分析
- 批准号:
16340044 - 财政年份:2004
- 资助金额:
$ 23.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global Ricci and scalar curvature problems in semi-Riemannian geometry
半黎曼几何中的全局 Ricci 和标量曲率问题
- 批准号:
5407313 - 财政年份:2003
- 资助金额:
$ 23.38万 - 项目类别:
Priority Programmes
Global Studies on Curvature and Geometric Structures of Riemannian Manifolds
黎曼流形曲率和几何结构的全局研究
- 批准号:
13640093 - 财政年份:2001
- 资助金额:
$ 23.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The structure of cut locus and global Riemannian geometry
割轨迹的结构与全局黎曼几何
- 批准号:
09440037 - 财政年份:1997
- 资助金额:
$ 23.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




