Noncommutative Harmonic Analysis, Operator Algebras, and Interpolation

非交换调和分析、算子代数和插值

基本信息

  • 批准号:
    0098157
  • 负责人:
  • 金额:
    $ 7.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

AbstractPopescuThe proposed research considers problems in noncommutative harmonic analysis, operator algebras, and interpolation in several variables. The framework of this proposal is mainly the full Fock space, certain noncommutative (resp. commutative) analytic Toeplitz algebras, and the algebra of all bounded linear operators on a Hilbert space. Noncommutative dilation theory, Poisson transforms on $C^*$-algebras generated by isometries, and commutant lifting theorems are considered in order to find noncommutative (resp. commutative) multivariable analogues to some classical results. The main directions of this proposed research are the following: harmonic analysis on Fock spaces; power bounded sequences of operators, structure, and numerical invariants; central intertwining lifting, suboptimization, and analytic interpolation in several variables; dilation theory for tuples of operators (noncontractions) and non-analytic interpolation in several variables. The motivation of this research is the recent worldwide interest in the noncommutative aspect of harmonic analysis originated from the concept of quantization which links together several branches of mathematics and is closely related to mathematical physics. The objective of this research is to advance the understanding of the relatively new area of multivariable operator theory and apply some of these results to the study of completely positive maps and their invariants, function theory and interpolation in several variables, multivariable linear systems, scattering, control theory, and model theory for tuples of operators. AbstractPopescuThe proposed research considers problems in noncommutative harmonic analysis, operator algebras, and interpolation in several variables. The framework of this proposal is mainly the full Fock space, certain noncommutative (resp. commutative) analytic Toeplitz algebras, and the algebra of all bounded linear operators on a Hilbert space. Noncommutative dilation theory, Poisson transforms on $C^*$-algebras generated by isometries, and commutant lifting theorems are considered in order to find noncommutative (resp. commutative) multivariable analogues to some classical results. The main directions of this proposed research are the following: harmonic analysis on Fock spaces; power bounded sequences of operators, structure, and numerical invariants; central intertwining lifting, suboptimization, and analytic interpolation in several variables; dilation theory for tuples of operators (noncontractions) and non-analytic interpolation in several variables. The motivation of this research is the recent worldwide interest in the noncommutative aspect of harmonic analysis originated from the concept of quantization which links together several branches of mathematics and is closely related to mathematical physics. The objective of this research is to advance the understanding of the relatively new area of multivariable operator theory and apply some of these results to the study of completely positive maps and their invariants, function theory and interpolation in several variables, multivariable linear systems, scattering, control theory, and model theory for tuples of operators.
该研究考虑了非对易调和分析、算子代数和多元插值法中的问题。该方案的框架主要是全Fock空间,一定的非对易空间。可交换的)解析Toeplitz代数,以及Hilbert空间上所有有界线性算子的代数。非对易膨胀理论,由等距生成的$C^*-代数上的Poisson变换,以及交换提升定理被考虑以求出非对易的。交换的)多变量类似于一些经典的结果。本文的主要研究方向如下:Fock空间上的调和分析;算子、结构和数值不变量的幂有界序列;中心缠绕提升、次优化和多元解析内插;算子组(非压缩)的膨胀理论和多元非解析内插。这项研究的动机是最近全世界对调和分析的非对易方面的兴趣源于量子化的概念,量子化将数学的几个分支联系在一起,并与数学物理密切相关。这项研究的目的是促进对多变量算子理论这一相对较新的领域的理解,并将其中一些结果应用于完全正映射及其不变量、多元函数论和多元插值论、多变量线性系统、散射、控制理论和算子元组的模型理论的研究。该研究考虑了非对易调和分析、算子代数和多元插值法中的问题。该方案的框架主要是全Fock空间,一定的非对易空间。可交换的)解析Toeplitz代数,以及Hilbert空间上所有有界线性算子的代数。非对易膨胀理论,由等距生成的$C^*-代数上的Poisson变换,以及交换提升定理被考虑以求出非对易的。交换的)多变量类似于一些经典的结果。本文的主要研究方向如下:Fock空间上的调和分析;算子、结构和数值不变量的幂有界序列;中心缠绕提升、次优化和多元解析内插;算子组(非压缩)的膨胀理论和多元非解析内插。这项研究的动机是最近全世界对调和分析的非对易方面的兴趣源于量子化的概念,量子化将数学的几个分支联系在一起,并与数学物理密切相关。这项研究的目的是促进对多变量算子理论这一相对较新的领域的理解,并将其中一些结果应用于完全正映射及其不变量、多元函数论和多元插值论、多变量线性系统、散射、控制理论和算子元组的模型理论的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gelu Popescu其他文献

Joint similarity to operators in noncommutative varieties
非交换簇中算子的联合相似性
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gelu Popescu
  • 通讯作者:
    Gelu Popescu
Entropy and Multivariable Interpolation
熵和多变量插值
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gelu Popescu
  • 通讯作者:
    Gelu Popescu
Representations of $$C^{*}$$-Algebras Associated with Noncommutative Polyvarieties
与非交换多元变量相关的$$C^{*}$$-代数的表示
Free holomorphic functions on the unit ball of B(H)n
  • DOI:
    10.1016/j.jfa.2009.10.014
  • 发表时间:
    2006-05
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gelu Popescu
  • 通讯作者:
    Gelu Popescu
Multivariable moment problems
  • DOI:
    10.1007/s11117-004-7398-1
  • 发表时间:
    2004-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Gelu Popescu
  • 通讯作者:
    Gelu Popescu

Gelu Popescu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gelu Popescu', 18)}}的其他基金

Noncommutative Multivariable Operator Theory
非交换多变量算子理论
  • 批准号:
    1500922
  • 财政年份:
    2015
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Continuing Grant
Noncommutative Multivariable Operator Theory and Free Holomorphic Functions
非交换多变量算子理论和自由全纯函数
  • 批准号:
    1067402
  • 财政年份:
    2011
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Multivariable Operator Theory on Noncommutative Domains
非交换域上的多变量算子理论
  • 批准号:
    0651879
  • 财政年份:
    2007
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Continuing Grant
Topics in Multivariable Operator Theory and Interpolation
多变量算子理论和插值主题
  • 批准号:
    0353513
  • 财政年份:
    2004
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Noncommutative Harmonic Analysis and Operator Algebras
数学科学:非交换调和分析和算子代数
  • 批准号:
    9531954
  • 财政年份:
    1996
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Some problems in harmonic analysis
谐波分析中的一些问题
  • 批准号:
    2350101
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Conference: Madison Lectures in Harmonic Analysis
会议:麦迪逊谐波分析讲座
  • 批准号:
    2337344
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
  • 批准号:
    2348797
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
  • 批准号:
    2236493
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Continuing Grant
Harmonic Analysis
谐波分析
  • 批准号:
    2883127
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Studentship
Conference: Harmonic and Complex Analysis: Modern and Classical
会议:调和与复分析:现代与古典
  • 批准号:
    2308417
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了