Inverse Problems via Layer Splitting

通过层分割的反演问题

基本信息

  • 批准号:
    0099838
  • 负责人:
  • 金额:
    $ 11.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to develop "Layer Stripping", or more properly, "Layer Splitting" techniques for inverse scattering problems in one or more dimensions. We are working to create stable algorithms by utilizing the principle of causality and by characterizing the scattering data, as much as we possibly can. Inverse scattering problems are often posed in either the "frequencydomain" or in the "time domain". Theoretically, the two are equivalent, one set of data being related to the other by the Fourier transform. However, features that are easily seen in one domain can appear much more complicated in the other. For example, the scattering operator, in the frequency domain is easily seen to satisfy certain bounds. The analogous bounds in the time domain appear much more complicated. Similarly, the timing of reflections (i.e. you hear reflections from nearby objects before you hear those from objects further away) becomes a property of ideals in spaces of analytic functions when translated to the frequency domain.A main feature of our approach is to carefully analyze how to express each such feature in both contexts, and use these to help characterize the scattering data and enforce stability.The fundamental task of science is to investigate the world. Most often, we accomplish this goal by directing waves (e.g. light, X-rays, sound) at an object and observing the waves after they have interacted with that object. In some cases, the results of such an experiment can be readily understood (e.g. a photograph, a single X-ray). However, as our technology becomes more and more complex, the data from an experiment are less and less likely to be directly meaningful. More and more, sophisticated mathematical and statistical techniques are necessary to translate data into something which is meaningful to the human investigator (e.g. a CAT scan, a neutron scattering experiment). This is the general role that Inverse Problems plays in science today. It is the mathematical science of interpreting experiment. When we solve inverse problems we run physics backwards, deducing the cause from the effect. While physical intuition often suggests the best imaging experiments, an imaging algorithm is not a model of a natural process. In particular, these problems are often ill-posed, and physical principles must often be applied in ways that are radically different than how they would function in a "forward problem" which directly models nature. Thus they offer a unique opportunity for using mathematical intuition to supplement physical intuition. This project seeks to employ physical principles in novel ways to develop stable imaging techniques. Here is an example, discovered under previous NSF support. We observe reflections of waves from a layered lossless medium with unknown wavespeed. If one makes a guess at the wave speed in part of the medium and uses that guess to compute the reflection one would have seen from the rest of the medium, then either the guess is correct or the computed reflections violate the principle of causality by arriving back at the receiver too soon. We used this principle to develop a very stable algorithm.
该项目的目标是开发“层剥离”,或更准确地说,“层分裂”技术,以解决一维或多维的逆散射问题。我们正在努力利用因果关系原理并尽可能地表征散射数据来创建稳定的算法。逆散射问题通常出现在“频域”或“时域”中。理论上,两者是等价的,一组数据通过傅里叶变换与另一组数据相关。然而,在一个领域中很容易看到的特征在另一个领域中可能显得复杂得多。例如,频域中的散射算子很容易看出满足某些界限。 时域中的类似界限显得更加复杂。 类似地,反射的时间(即,您先听到附近物体的反射,然后再听到远处物体的反射)转换到频域后,就成为分析函数空间中理想的属性。我们方法的一个主要特点是仔细分析如何在两种情况下表达每个此类特征,并使用它们来帮助表征散射数据并增强稳定性。科学的基本任务是研究世界。大多数情况下,我们通过将波(例如光、X 射线、声音)引导至某个物体并在波与该物体相互作用后观察它们来实现此目标。 在某些情况下,此类实验的结果很容易理解(例如一张照片、一张 X 射线)。 然而,随着我们的技术变得越来越复杂,实验中的数据越来越不可能具有直接意义。越来越需要复杂的数学和统计技术将数据转化为对人类研究人员有意义的东西(例如 CAT 扫描、中子散射实验)。这就是反问题在当今科学中扮演的一般角色。 它是解释实验的数学科学。当我们解决逆问题时,我们将物理学倒推,从结果中推断出原因。虽然物理直觉通常建议最好的成像实验,但成像算法并不是自然过程的模型。特别是,这些问题通常是不适定的,并且物理原理的应用方式通常必须与它们在直接模拟自然的“正向问题”中的运作方式截然不同。因此,它们提供了利用数学直觉来补充物理直觉的独特机会。该项目旨在以新颖的方式利用物理原理来开发稳定的成像技术。这是一个在以前的 NSF 支持下发现的示例。我们观察波速未知的层状无损介质的波反射。如果人们对部分介质中的波速进行猜测,并使用该猜测来计算从介质的其余部分看到的反射,那么要么猜测是正确的,要么计算出的反射由于过早到达接收器而违反了因果关系原理。我们利用这个原理开发了非常稳定的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Sylvester其他文献

The Power of Filling in Balanced Allocations
平衡分配的力量
  • DOI:
    10.1137/23m1552231
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitrios Los;Thomas Sauerwald;John Sylvester
  • 通讯作者:
    John Sylvester
Mean-Biased Processes for Balanced Allocations
平衡分配的均值偏差过程
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitrios Los;Thomas Sauerwald;John Sylvester
  • 通讯作者:
    John Sylvester
Postimplant rectal dosimetry is not dependent on <sup>103</sup>Pd or <sup>125</sup>I seed activity
  • DOI:
    10.1016/j.brachy.2009.12.001
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gregory S. Merrick;John Sylvester;Peter Grimm;Zachariah A. Allen;Wayne M. Butler;Joshua L. Reed;Jonathan Khanjian
  • 通讯作者:
    Jonathan Khanjian
MP78-11 PERIRECTAL HYDROGEL SPACER APPLICATION IN MEN RECEIVING PROSTATE RADIOTHERAPY: A PROSPECTIVE MULTICENTER RANDOMIZED CONTROLLED TRIAL
  • DOI:
    10.1016/j.juro.2015.02.2827
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Pieczonka;Neil Mariados;John Sylvester;Phillip Aliotta;Christopher Skomra;Larry Karsh;Brian Smith;Richard Hudes;David Beyer;Steven Kurtzman;Al Tiara;Jeffrey Bogart;Alex Hsi;C. Garo Gholodian;Lee Ponsky;Rodney Ellis;Mark Logsdon;Seth Rosenthal;Kevin Forsythe;Hong Zhang
  • 通讯作者:
    Hong Zhang
Balanced Allocations with Heterogeneous Bins: The Power of Memory
异构容器的平衡分配:内存的力量

John Sylvester的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Sylvester', 18)}}的其他基金

Inverse Source Problems, Splitting, and Uncertainty
逆源问题、分裂和不确定性
  • 批准号:
    1712525
  • 财政年份:
    2017
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Inverse Source and Inverse Scattering Problems
逆源和逆散射问题
  • 批准号:
    1309362
  • 财政年份:
    2013
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Inverse Problems in Passive and Active Remote Sensing
被动和主动遥感反演问题
  • 批准号:
    1007447
  • 财政年份:
    2010
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Continuing Grant
Inverse Problems in Remote Sensing
遥感反演问题
  • 批准号:
    0653533
  • 财政年份:
    2007
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Continuing Grant
Far Fields and Remote Sensing
远场和遥感
  • 批准号:
    0355455
  • 财政年份:
    2004
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Inverse Problems, Layer Stripping and the Riesz Transform
反演问题、层剥离和 Riesz 变换
  • 批准号:
    9801068
  • 财政年份:
    1998
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Boundary Problems
数学科学:逆边界问题
  • 批准号:
    9423849
  • 财政年份:
    1995
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Boundary Value Problems
数学科学:逆边值问题
  • 批准号:
    9123757
  • 财政年份:
    1992
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
U.S.-Finland Workshop on Inverse Problems; Sodankyla, Finland; June 14 -20, 1992
美国-芬兰反问题研讨会;
  • 批准号:
    9123994
  • 财政年份:
    1992
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Mathematica Sciences: Inverse Boundary Value Problems
数学科学:逆边值问题
  • 批准号:
    9004624
  • 财政年份:
    1990
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Continuing Grant
CAREER: Learning, testing, and hardness via extremal geometric problems
职业:通过极值几何问题学习、测试和硬度
  • 批准号:
    2145800
  • 财政年份:
    2022
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Continuing Grant
A study on Diophantine problems via combinatorial methods
丢番图问题的组合方法研究
  • 批准号:
    22K13900
  • 财政年份:
    2022
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
  • 批准号:
    10602003
  • 财政年份:
    2022
  • 资助金额:
    $ 11.13万
  • 项目类别:
Synergistic Inverse Problems Omni-Solver for Expeditious High Quality Multimodal Cardiovascular MRI via Deep Compressive Sensing and Data Coalescing
协同逆问题 Omni-Solver 通过深度压缩传感和数据合并实现快速高质量多模态心血管 MRI
  • 批准号:
    MR/V023799/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Fellowship
Development of technology to reduce environmental problems via innovative water purification agents
开发通过创新水净化剂减少环境问题的技术
  • 批准号:
    EP/V027522/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Research Grant
Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
  • 批准号:
    10285226
  • 财政年份:
    2021
  • 资助金额:
    $ 11.13万
  • 项目类别:
Starting before birth: Preventing maternal mental health problems via a virtual and partner-inclusive intervention
从出生前开始:通过虚拟和包括伴侣在内的干预措施预防孕产妇心理健康问题
  • 批准号:
    448449
  • 财政年份:
    2021
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Operating Grants
Approaching Modern Problems in Multivariate Time Series via Network Modelling and State-Space Methods.
通过网络建模和状态空间方法解决多元时间序列中的现代问题。
  • 批准号:
    2440162
  • 财政年份:
    2020
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Studentship
Solving the Colloidal and Photophysical Instability Problems of Perovskite Quantum Dots via Surface Ligand Engineering
通过表面配体工程解决钙钛矿量子点的胶体和光物理不稳定性问题
  • 批准号:
    2005079
  • 财政年份:
    2020
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了