Nonlinear Elliptic Equations and Systems
非线性椭圆方程和系统
基本信息
- 批准号:0100819
- 负责人:
- 金额:$ 13.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-15 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The first part of the proposed work concerns Monge-Ampere equations, including extensions of classical results of Jorgens, Calabi and Pogorelov which state that entire solutions to such equations are quadratic polynomials. Dirichlet problem for Monge-Ampere equations in exterior domains of Euclidean space will also be investigated. Related problems concerning the affine Bernstein problem will be studied. The second part of the proposed work concerns best Sobolev inequality on Riemannian manifolds and the Yamabe problem on manifolds with boundary.This includes efforts in establishing a new form of best Sobolev inequalities on Riemannian manifolds as well as existence and compactness results concerning the Yamabe problem on manifolds with boundary. Sharp pointwise estimates to blow up solutions play important roles in such studies.The role of mathematical analysis is not so much to create the equations as it is to create qualitative and quantitative information about the solutions. This may include answers to questions about existence, uniqueness, smoothness, and growth. In addition, analysis often develops methods for approximation of solutions and estimates on the accuracy of these approximations.
第一部分的拟议工作涉及蒙日安培方程,包括扩展经典的结果Jorgens,卡拉比和Pogorelov其中指出,整个解决方案,这样的方程是二次多项式。我们还将研究欧氏空间外区域上Monge-Ampere方程的Dirichlet问题。仿射伯恩斯坦问题的相关问题将被研究。第二部分是关于黎曼流形上的最佳Sobolev不等式和带边流形上的Yamabe问题,包括建立黎曼流形上最佳Sobolev不等式的一种新形式,以及带边流形上Yamabe问题的存在性和紧性结果。在这类研究中,精确的逐点估计爆破解起着重要的作用。数学分析的作用与其说是创建方程,不如说是创建关于解的定性和定量信息。这可能包括对存在、唯一、平滑和增长等问题的回答。此外,分析经常发展出解的近似方法和对这些近似的准确性的估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanyan Li其他文献
A 3D Fracture Network Model for the Undisturbed Rock Mass at the Songta Dam Site Based on Small Samples
基于小样本的松塔坝址原状岩体三维裂隙网络模型
- DOI:
10.1007/s00603-015-0747-5 - 发表时间:
2016-02 - 期刊:
- 影响因子:6.2
- 作者:
Xudong Han;Jianping Chen;Qing Wang;Yanyan Li;Wen Zhang;Tianwen Yu - 通讯作者:
Tianwen Yu
The prevalence of parent-teacher interaction in developing countries and its effect on student outcomes
发展中国家家长与教师互动的普遍性及其对学生成绩的影响
- DOI:
10.1016/j.tate.2019.102878 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Guirong Li;M. Lin;Chengfang Liu;Angela Johnson;Yanyan Li;P. Loyalka - 通讯作者:
P. Loyalka
Harmine mediated neuroprotection via evaluation of glutamate transporter 1 in a rat model of global cerebral ischemia
在全脑缺血大鼠模型中,去氢骆驼蓬碱通过评估谷氨酸转运蛋白 1 介导的神经保护作用
- DOI:
10.1016/j.neulet.2014.09.023 - 发表时间:
2014-11 - 期刊:
- 影响因子:2.5
- 作者:
Piyun Sun;Shuyan Zhang;Yanyan Li;Lihua Wang - 通讯作者:
Lihua Wang
Gradient Type Methods for Linear Hyperspectral Unmixing
线性高光谱解混的梯度型方法
- DOI:
10.4208/csiam-am.so-2021-0001 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Fangfang Xu;Yating Wang;Yanyan Li;Lu Liu;Tonghua Tian - 通讯作者:
Tonghua Tian
Leveraging Atriplex hortensis choline monooxygenase to improve chilling tolerance in cotton
利用滨藜胆碱单加氧酶提高棉花的耐冷性
- DOI:
10.1016/j.envexpbot.2019.03.012 - 发表时间:
2019-06 - 期刊:
- 影响因子:5.7
- 作者:
Yanan Wang;Chengzhen Liang;ZhigangMeng;Yanyan Li;Muhammad Ali Abid;Muhammad Askari;Peilin Wang;Yuan Wang;Guoqing Sun;Yongping Cai;Shou-Yi Chen;Yi Lin;Rui Zhang;S;ui Guo - 通讯作者:
ui Guo
Yanyan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanyan Li', 18)}}的其他基金
Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
- 批准号:
2247410 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: Building A Cybersecurity Mindset Through Continuous Cross-module Learning
协作研究:通过持续的跨模块学习建立网络安全心态
- 批准号:
2315490 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
- 批准号:
2318710 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Theory of Nonlinear Elliptic Equations and Systems
非线性椭圆方程和系统理论
- 批准号:
2000261 - 财政年份:2020
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Nonlinear Elliptic Equations and Systems and Applications
非线性椭圆方程和系统及应用
- 批准号:
1501004 - 财政年份:2015
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Nonlinear Elliptic Equations and Applications
非线性椭圆方程及其应用
- 批准号:
1203961 - 财政年份:2012
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
FRG: Collaborative research: Emerging issues in the sciences involving non standard diffusion
FRG:合作研究:涉及非标准扩散的科学中的新问题
- 批准号:
1065971 - 财政年份:2011
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
On Some Nonlinear Elliptic Equations
关于一些非线性椭圆方程
- 批准号:
0701545 - 财政年份:2007
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Advances in Modern Free Boundary Problems
现代自由边界问题的进展
- 批准号:
0600930 - 财政年份:2006
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
On Some Fully Nonlinear Elliptic Equations
关于一些完全非线性椭圆方程
- 批准号:
0401118 - 财政年份:2004
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
相似海外基金
Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
- 批准号:
2247410 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Singular and Global Solutions to Nonlinear Elliptic Equations
职业:非线性椭圆方程的奇异和全局解
- 批准号:
2143668 - 财政年份:2022
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Singular solutions for nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程的奇异解
- 批准号:
DP220101816 - 财政年份:2022
- 资助金额:
$ 13.5万 - 项目类别:
Discovery Projects
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2022
- 资助金额:
$ 13.5万 - 项目类别:
Discovery Grants Program - Individual
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2021
- 资助金额:
$ 13.5万 - 项目类别:
Discovery Grants Program - Individual
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
- 批准号:
RGPIN-2016-04195 - 财政年份:2021
- 资助金额:
$ 13.5万 - 项目类别:
Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2020
- 资助金额:
$ 13.5万 - 项目类别:
Discovery Grants Program - Individual