On Some Nonlinear Elliptic Equations
关于一些非线性椭圆方程
基本信息
- 批准号:0701545
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On some Nonlinear Elliptic Equations Abstract of Proposed ResearchYanyan LiThis award is to continue earlier studies on the compactness of solutions to the Yamabe problem, and on the existence of solutions to a very general fully nonlinear version of the Yamabe problem. The PI also proposes to study, in collaboration with Luis Caffarelli, multi-valued solutions to the Monge-Ampere equations in order to understand behavior of a metric generated by a multi-valued solutions to the Monge-Ampere equations near the vertex of a Y-shaped singularity in 3-dimensional space. Many questions in (Riemannian) geometry can be formulated as questions about the properties of certain associated nonlinear partial differential equations and their solutions. These formulations have often proved to be the means to prove very general geometrical theorems. The results often depend on the dimension of the manifolds and other geometrical invariants. Under this award, a number of specific conjectures and problems of this type will be investigated.
关于一些非线性椭圆型方程摘要建议ResearchYanyan Li这个奖项是继续早期的研究紧的解决方案的Yamabe问题,并存在的解决方案,一个非常普遍的完全非线性版本的Yamabe问题。PI还提议与Luis Caffarelli合作研究Monge-Ampere方程的多值解,以了解由Monge-Ampere方程的多值解在三维空间中Y形奇点的顶点附近生成的度量的行为。黎曼几何中的许多问题可以表述为关于某些相关的非线性偏微分方程及其解的性质的问题。这些公式经常被证明是证明非常一般的几何定理的手段。结果往往依赖于流形的维数和其他几何不变量。根据这项奖励,将调查一些这类具体的知识和问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanyan Li其他文献
A 3D Fracture Network Model for the Undisturbed Rock Mass at the Songta Dam Site Based on Small Samples
基于小样本的松塔坝址原状岩体三维裂隙网络模型
- DOI:
10.1007/s00603-015-0747-5 - 发表时间:
2016-02 - 期刊:
- 影响因子:6.2
- 作者:
Xudong Han;Jianping Chen;Qing Wang;Yanyan Li;Wen Zhang;Tianwen Yu - 通讯作者:
Tianwen Yu
The prevalence of parent-teacher interaction in developing countries and its effect on student outcomes
发展中国家家长与教师互动的普遍性及其对学生成绩的影响
- DOI:
10.1016/j.tate.2019.102878 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Guirong Li;M. Lin;Chengfang Liu;Angela Johnson;Yanyan Li;P. Loyalka - 通讯作者:
P. Loyalka
Harmine mediated neuroprotection via evaluation of glutamate transporter 1 in a rat model of global cerebral ischemia
在全脑缺血大鼠模型中,去氢骆驼蓬碱通过评估谷氨酸转运蛋白 1 介导的神经保护作用
- DOI:
10.1016/j.neulet.2014.09.023 - 发表时间:
2014-11 - 期刊:
- 影响因子:2.5
- 作者:
Piyun Sun;Shuyan Zhang;Yanyan Li;Lihua Wang - 通讯作者:
Lihua Wang
Gradient Type Methods for Linear Hyperspectral Unmixing
线性高光谱解混的梯度型方法
- DOI:
10.4208/csiam-am.so-2021-0001 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Fangfang Xu;Yating Wang;Yanyan Li;Lu Liu;Tonghua Tian - 通讯作者:
Tonghua Tian
Leveraging Atriplex hortensis choline monooxygenase to improve chilling tolerance in cotton
利用滨藜胆碱单加氧酶提高棉花的耐冷性
- DOI:
10.1016/j.envexpbot.2019.03.012 - 发表时间:
2019-06 - 期刊:
- 影响因子:5.7
- 作者:
Yanan Wang;Chengzhen Liang;ZhigangMeng;Yanyan Li;Muhammad Ali Abid;Muhammad Askari;Peilin Wang;Yuan Wang;Guoqing Sun;Yongping Cai;Shou-Yi Chen;Yi Lin;Rui Zhang;S;ui Guo - 通讯作者:
ui Guo
Yanyan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanyan Li', 18)}}的其他基金
Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
- 批准号:
2247410 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Building A Cybersecurity Mindset Through Continuous Cross-module Learning
协作研究:通过持续的跨模块学习建立网络安全心态
- 批准号:
2315490 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
- 批准号:
2318710 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Theory of Nonlinear Elliptic Equations and Systems
非线性椭圆方程和系统理论
- 批准号:
2000261 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Nonlinear Elliptic Equations and Systems and Applications
非线性椭圆方程和系统及应用
- 批准号:
1501004 - 财政年份:2015
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Nonlinear Elliptic Equations and Applications
非线性椭圆方程及其应用
- 批准号:
1203961 - 财政年份:2012
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
FRG: Collaborative research: Emerging issues in the sciences involving non standard diffusion
FRG:合作研究:涉及非标准扩散的科学中的新问题
- 批准号:
1065971 - 财政年份:2011
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Advances in Modern Free Boundary Problems
现代自由边界问题的进展
- 批准号:
0600930 - 财政年份:2006
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
On Some Fully Nonlinear Elliptic Equations
关于一些完全非线性椭圆方程
- 批准号:
0401118 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Nonlinear Elliptic Equations and Systems
非线性椭圆方程和系统
- 批准号:
0100819 - 财政年份:2001
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似海外基金
Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
- 批准号:
2247410 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Singular and Global Solutions to Nonlinear Elliptic Equations
职业:非线性椭圆方程的奇异和全局解
- 批准号:
2143668 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Singular solutions for nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程的奇异解
- 批准号:
DP220101816 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Discovery Projects
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
- 批准号:
RGPIN-2016-04195 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual