Nonlinear Elliptic Equations and Systems and Applications

非线性椭圆方程和系统及应用

基本信息

  • 批准号:
    1501004
  • 负责人:
  • 金额:
    $ 59.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Partial differential equations arise naturally in physics, engineering, geometry, and many other fields, and they form the basis for modeling many phenomena in the physical world. The proposed work concern nonlinear partial differential equations, which are especially important due to the nonlinear effects they are used to model. For instance, such equations turn up in the study of composite materials. This project will contribute to a basic understanding of fully nonlinear elliptic equations, thereby providing scientists and engineers with sharpened insight into various physical processes and ultimately enhancing the quality of, say, consumer products manufactured from composites. As part of the project, the principal investigator will train Ph.D. students, many of whom are expected to continue their careers as educators. They, in turn, will convey to even younger generations both their mathematical knowledge and the long-term value of mathematical research not only to science and engineering but also, in the end, to society.The PI proposes to investigate the compactness of conformal metrics on a Riemannian manifold having constant sigma-k curvature for k larger than 1 and less than half of the dimension of the manifold. For k greater than or equal to half of the dimension of the manifold, or when the manifold is locally conformally flat, the compactness result has been proved. A success in establishing the compactness results would lead to new existence results on conformal metrics with constant sigma-k curvature. A related problem on compactness of solutions to the constant Q-curvature equations on Riemannian manifolds is also proposed. The PI has also proposed to study elliptic systems arising from composite material. The approach to the study of the compactness of solutions is to give a fine analysis of blow up solutions to the type of nonlinear elliptic equations on manifolds. Efforts will be made in advancing further and deeper understanding of solutions of conformally invariant equations.
偏微分方程自然出现在物理学、工程学、几何学和许多其他领域,它们构成了物理世界中许多现象建模的基础。 所提出的工作涉及非线性偏微分方程,由于它们用于建模的非线性效应,因此尤为重要。例如,此类方程出现在复合材料的研究中。该项目将有助于对完全非线性椭圆方程的基本理解,从而使科学家和工程师能够深入了解各种物理过程,并最终提高复合材料制造的消费品等产品的质量。作为该项目的一部分,首席研究员将培训博士。学生,其中许多人预计将继续担任教育工作者。反过来,他们将向更年轻的一代传达他们的数学知识和数学研究的长期价值,不仅对科学和工程,而且最终对社会。PI建议研究黎曼流形上的共形度量的紧性,当k大于1且小于流形维数的一半时,该流形具有恒定的sigma-k曲率。当k大于或等于流形维数的一半时,或者当流形局部共形平坦时,紧性结果已得到证明。成功建立紧致性结果将导致在具有恒定 sigma-k 曲率的共形度量上产生新的存在结果。还提出了黎曼流形上常Q曲率方程解的紧性问题。 PI 还提议研究由复合材料产生的椭圆系统。研究解的紧性的方法是对流形上的非线性椭圆方程类型的爆炸解进行精细分析。我们将努力进一步加深对共形不变方程解的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanyan Li其他文献

Exploring the role of EFL learners’ online self-regulation profiles in their social regulation of learning in wiki-supported collaborative reading activities
探索 EFL 学习者在线自我调节档案在维基支持的协作阅读活动中的学习社会调节中的作用
  • DOI:
    10.1007/s40692-020-00168-3
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yanyan Li;Xiaoshan Li;You Su;Yu Peng;Hening Hu
  • 通讯作者:
    Hening Hu
Exploring the relationship between individual characteristics and argumentative discourse styles: the role of achievement goals and personality traits
探索个体特征与辩论性话语风格之间的关系:成就目标和人格特质的作用
Epitaxial growth of apatite nanorods on the surfaces of porous calcium phosphate
多孔磷酸钙表面磷灰石纳米棒的外延生长
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhengren Zhou;Yi Jiang;Zhihui Sun;Yanyan Li;Youoiang Hong
  • 通讯作者:
    Youoiang Hong
Comparing Social Knowledge Construction of College English Language Learners in Groups Characterized by Facilitative and Directive Other-Regulation: A Case Study
促进性和指导性其他调节群体中大学英语学习者社会知识建构的比较:案例研究
Stochastic Modeling and Estimation of Wireless Channels with Application to Ultra Wide Band Systems
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanyan Li
  • 通讯作者:
    Yanyan Li

Yanyan Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanyan Li', 18)}}的其他基金

Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
  • 批准号:
    2247410
  • 财政年份:
    2023
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Building A Cybersecurity Mindset Through Continuous Cross-module Learning
协作研究:通过持续的跨模块学习建立网络安全心态
  • 批准号:
    2315490
  • 财政年份:
    2023
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
  • 批准号:
    2318710
  • 财政年份:
    2023
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Standard Grant
Theory of Nonlinear Elliptic Equations and Systems
非线性椭圆方程和系统理论
  • 批准号:
    2000261
  • 财政年份:
    2020
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Standard Grant
Nonlinear Elliptic Equations and Applications
非线性椭圆方程及其应用
  • 批准号:
    1203961
  • 财政年份:
    2012
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Continuing Grant
FRG: Collaborative research: Emerging issues in the sciences involving non standard diffusion
FRG:合作研究:涉及非标准扩散的科学中的新问题
  • 批准号:
    1065971
  • 财政年份:
    2011
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Standard Grant
On Some Nonlinear Elliptic Equations
关于一些非线性椭圆方程
  • 批准号:
    0701545
  • 财政年份:
    2007
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Continuing Grant
Advances in Modern Free Boundary Problems
现代自由边界问题的进展
  • 批准号:
    0600930
  • 财政年份:
    2006
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Standard Grant
On Some Fully Nonlinear Elliptic Equations
关于一些完全非线性椭圆方程
  • 批准号:
    0401118
  • 财政年份:
    2004
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Continuing Grant
Nonlinear Elliptic Equations and Systems
非线性椭圆方程和系统
  • 批准号:
    0100819
  • 财政年份:
    2001
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Continuing Grant

相似海外基金

Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
  • 批准号:
    2247410
  • 财政年份:
    2023
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Standard Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Singular and Global Solutions to Nonlinear Elliptic Equations
职业:非线性椭圆方程的奇异和全局解
  • 批准号:
    2143668
  • 财政年份:
    2022
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Continuing Grant
Singular solutions for nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程的奇异解
  • 批准号:
    DP220101816
  • 财政年份:
    2022
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Discovery Projects
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2022
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Discovery Grants Program - Individual
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
  • 批准号:
    2111059
  • 财政年份:
    2021
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Standard Grant
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2021
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Discovery Grants Program - Individual
Fully Nonlinear Elliptic Equations
完全非线性椭圆方程
  • 批准号:
    2054973
  • 财政年份:
    2021
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Standard Grant
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
  • 批准号:
    RGPIN-2016-04195
  • 财政年份:
    2021
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2020
  • 资助金额:
    $ 59.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了