Asymptotic Problems in Nonlinear Waves and Beyond
非线性波及其以外的渐近问题
基本信息
- 批准号:0807653
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the development of tools for the asymptotic analysis of integrable nonlinear wave equations. There are two complementary aspects of this work: asymptotic analysis in the scattering theory of linear differential equations, and asymptotic analysis of the corresponding inverse problems. The particular application problems to be studied along the way include (i) the semiclassical limit of the focusing nonlinear Schrodinger equation, (ii) the corresponding semiclassical limit of the modified nonlinear Schrodinger equation, (iii) the semiclassical limit of the sine-Gordon equation in laboratory coordinates, (iv) the continuum limit of the Ablowitz-Ladik equations, (v) singular limits for multicomponent integrable equations, and (vi) several asymptotic problems in approximation theory with applications to random matrix theory.This work is interesting and important because it will promote understanding of singular limits leading formally to ill-posed dynamical systems. Indeed, the motivating problem of the semiclassical limit of the focusing nonlinear Schrodinger equation with general smooth but nonanalytic initial data remains one of the most important open problems in applied analysis, and the tools developed as part of this project will directly address this problem and other similar ones. Furthermore, while the basic aim of the project is the development of methods of analysis, the methods will also be applied to several specific integrable equations and also to open problems beyond the field of nonlinear waves. For example, we intend to apply specialized asymptotic methods developed in the context of nonlinear wave theory to the problem of the asymptotic analysis (in the bulk scaling limit) of the correlation functions of the normal random matrix model, with its coincident connections to the theory of Laplacian growth (also known as Hele-Shaw flow) and conformal mapping. Many of the problems addressed as part of this project have a universal character, arising in the modeling of diverse physical phenomena, and it follows that analytical techniques applicable to these problems have far-reaching consequences. This project also has an educational component, stressing the training of postdocs and graduate students through collaborative research and course development.
本计画系关于可积非线性波动方程渐近分析工具之发展。 这项工作有两个互补的方面:线性微分方程散射理论的渐近分析,以及相应的反问题的渐近分析。 沿着要研究的具体应用问题包括:(i)聚焦非线性薛定谔方程的半经典极限,(ii)修正非线性薛定谔方程的相应半经典极限,(iii)实验室坐标下sine-Gordon方程的半经典极限,(iv)Ablowitz-Ladik方程的连续极限,(v)多分量可积方程的奇异极限,以及(vi)逼近理论中的几个渐近问题及其在随机矩阵理论中的应用.这项工作是有趣的和重要的,因为它将促进对奇异极限的理解,从而正式导致不适定的动力系统. 事实上,具有一般光滑但非解析初始数据的聚焦非线性薛定谔方程的半经典极限的激励问题仍然是应用分析中最重要的开放问题之一,作为本项目的一部分开发的工具将直接解决这个问题和其他类似的问题。 此外,虽然该项目的基本目标是分析方法的发展,但这些方法也将应用于几个特定的可积方程,以及非线性波领域以外的开放问题。 例如,我们打算将非线性波动理论中发展起来的专门的渐近方法应用于正态随机矩阵模型的相关函数的渐近分析(在体积标度极限下)问题,并将其与拉普拉斯增长理论(也称为Hele-Shaw流)和保角映射联系起来。 作为该项目的一部分,解决的许多问题具有普遍性,产生于不同物理现象的建模,因此适用于这些问题的分析技术具有深远的影响。 该项目还包括教育部分,强调通过合作研究和课程开发培训博士后和研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Miller其他文献
Early and late-phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs. I. The association of disordered airway physiology to leukocyte infiltration.
非麻醉豚鼠过敏原激发后的早期和晚期支气管收缩。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
P. A. Hutson;M K Church;Timothy P. Clay;Peter Miller;S. Holgate - 通讯作者:
S. Holgate
Mobilizing the Consumer
动员消费者
- DOI:
10.1177/026327697014001001 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Peter Miller;N. Rose - 通讯作者:
N. Rose
Public opinion of alcohol industry corporate political activities
酒类行业企业政治活动舆情
- DOI:
10.1111/1753-6405.13121 - 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
Peter Miller;Florentine Martino;Narelle Robertson;J. Stafford;M. Daube - 通讯作者:
M. Daube
Accounting, culture, and the state
会计、文化和国家
- DOI:
10.1016/j.cpa.2015.10.001 - 发表时间:
2016 - 期刊:
- 影响因子:5.1
- 作者:
Ingrid Jeacle;Peter Miller - 通讯作者:
Peter Miller
Epistaxis in COVID positive ICU patients, implications, and future interventions
- DOI:
10.1016/j.rmed.2024.107851 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Sarah Clark;Kristin Sheehan;Samantha Fabian;Timothy Immelman;Connie Liu;John Clinger;Peter Miller - 通讯作者:
Peter Miller
Peter Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Miller', 18)}}的其他基金
Universality in Nonlinear Waves and Related Topics
非线性波的普遍性及相关主题
- 批准号:
2204896 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ShellEye-DEMO: Satellite monitoring for shellfish and finfish aquaculture: Domain expanded; Enhanced resolution; Marine insurance; Other species
ShellEye-DEMO:贝类和有鳍鱼类水产养殖卫星监测:领域扩大;
- 批准号:
NE/P011004/1 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Applied Analysis for Integrable Nonlinear Waves
可积非线性波的应用分析
- 批准号:
1513054 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ShellEye: Satellite-based water quality bulletins for shellfish farms to support management decisions
ShellEye:贝类养殖场基于卫星的水质公告,支持管理决策
- 批准号:
BB/M026698/1 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Frontiers in Asymptotic Analysis for Integrable Nonlinear Waves
可积非线性波渐近分析前沿
- 批准号:
1206131 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Testing Information and Communication Technology (ICT) Recall Aids for Surveys of Personal Networks
博士论文研究:测试个人网络调查的信息和通信技术 (ICT) 回忆辅助工具
- 批准号:
1246942 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FASTNEt - Fluxes Across the Sloping Topography of the North East Atlantic (PML Sections)
FASTNEt - 东北大西洋倾斜地形的通量(PML 部分)
- 批准号:
NE/I030151/1 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Research Grant
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
- 批准号:
0354373 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
The Semiclassical Limit of the Focusing Nonlinear Schroedinger Equation
聚焦非线性薛定谔方程的半经典极限
- 批准号:
0103909 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
- 批准号:
23K03149 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
2403552 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Analysis and applications of nonlinear problems with lack of compactness
缺乏紧性的非线性问题的分析与应用
- 批准号:
RGPIN-2022-04213 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
- 批准号:
22K20331 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Nonlinear inverse problems in holography and particle kinematics
全息术和粒子运动学中的非线性反问题
- 批准号:
DGECR-2022-00438 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Launch Supplement