A Study of Wave Patterns
波形研究
基本信息
- 批准号:1812625
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is familiar to everyone that waves typically organize themselves into certain identifiable patterns. For instance, a stone dropped into a pond produces concentric rings of ripples, and the wake of a ship has a characteristic V-shape. Although they may be harder to see in everyday experience, other types of waves like electromagnetic waves frequently also produce such patterns. This means that wave patterns might be understood from the mathematical study of certain underlying models of wave motion that are common to several different types of physical systems. In a similar way, understanding wave patterns from first principles is a worthwhile pursuit because such patterns occur frequently in so many physical circumstances, ranging from the very small (e.g. optics or quantum waves on the scale of atoms) to the very large (e.g. gravitational waves on the scale of the galaxy). This project is a systematic investigation of wave patterns arising in mathematical models of wave propagation, and it aims both to catalogue the various wave patterns that can occur in a given model and to determine the range of models and physical situations in which a given pattern can arise. As one example application, the outcomes of this project will contribute to our understanding of rogue waves, large disturbances of the sea surface that appear out of nowhere and disappear just as suddenly, but which can cause great damage to ships, unless they are anticipated and avoided or otherwise mitigated. Some parts of the project will serve as vehicles for the training of junior researchers such as undergraduate students, graduate students, and postdocs. This project aims to develop and apply methods from the theory of completely integrable systems to the study of wave patterns. The key mathematical methods are tools of complex, functional, and asymptotic analysis, and the results of the research will be relevant to the fields of nonlinear wave propagation, integrable systems, and special functions. Specific models to be studied include the three-wave resonant interaction equations, the focusing nonlinear Schroedinger equation, the Davey-Stewartson equations, and the family of Painleve equations. The project will study both regular wave patterns, i.e., modulated wave trains spontaneously generated from smooth initial conditions, and universal wave patterns, i.e., special structures appearing in double-scaling limits that do not depend on initial conditions (and perhaps not even on the equation of motion). Specific goals include the development of new techniques for the investigation of wave patterns via asymptotic analysis in integrable systems consisting of multiple coupled fields or in multiple space dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每个人都很熟悉,波通常会将自己组织成某些可识别的模式。例如,一块石头掉进池塘会产生同心圆的涟漪,而船只的尾流则具有典型的V形。虽然它们在日常生活中可能很难看到,但其他类型的波,如电磁波,也经常产生这种模式。这意味着,可以通过对几种不同类型的物理系统所共有的某些基本波动模型的数学研究来理解波动模式。同样,从第一原理理解波的模式也是一个值得追求的目标,因为这种模式经常出现在许多物理环境中,从非常小的(例如原子尺度上的光学或量子波)到非常大的(例如星系尺度上的引力波)。该项目是对波浪传播数学模型中出现的波浪模式进行系统研究,其目的是对给定模型中可能出现的各种波浪模式进行编目,并确定模型的范围和给定模式可能出现的物理情况。作为一个应用实例,该项目的成果将有助于我们了解流氓波,海面的大扰动,突然出现和消失,但可能会对船舶造成巨大损害,除非它们被预期和避免或以其他方式减轻。该项目的某些部分将作为培训初级研究人员的工具,如本科生,研究生和博士后。该项目旨在开发和应用从完全可积系统理论到波型研究的方法。关键的数学方法是复分析、泛函分析和渐近分析的工具,研究结果将与非线性波传播、可积系统和特殊函数等领域有关。具体的研究模型包括三波共振相互作用方程,聚焦非线性薛定谔方程,Davey-Stewartson方程,和家庭的Painleve方程。该项目将研究两种规则波型,即,从平滑初始条件自发产生的调制波列,以及通用波型,即,出现在双标度极限中的特殊结构,不依赖于初始条件(甚至可能不依赖于运动方程)。具体目标包括通过在由多个耦合场或多个空间维度组成的可积系统中进行渐近分析来研究波型的新技术的开发。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rational Solutions of the Painlevé-III Equation: Large Parameter Asymptotics
Painlevé-III 方程的有理解:大参数渐近
- DOI:10.1007/s00365-019-09463-4
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Bothner, Thomas;Miller, Peter D.
- 通讯作者:Miller, Peter D.
Broader universality of rogue waves of infinite order
- DOI:10.1016/j.physd.2022.133289
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Deniz Bilman;P. Miller
- 通讯作者:Deniz Bilman;P. Miller
Universality Near the Gradient Catastrophe Point in the Semiclassical Sine‐Gordon Equation
- DOI:10.1002/cpa.22018
- 发表时间:2019-12
- 期刊:
- 影响因子:3
- 作者:Bing-ying Lu;P. Miller
- 通讯作者:Bing-ying Lu;P. Miller
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Miller其他文献
Early and late-phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs. I. The association of disordered airway physiology to leukocyte infiltration.
非麻醉豚鼠过敏原激发后的早期和晚期支气管收缩。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
P. A. Hutson;M K Church;Timothy P. Clay;Peter Miller;S. Holgate - 通讯作者:
S. Holgate
Mobilizing the Consumer
动员消费者
- DOI:
10.1177/026327697014001001 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Peter Miller;N. Rose - 通讯作者:
N. Rose
Public opinion of alcohol industry corporate political activities
酒类行业企业政治活动舆情
- DOI:
10.1111/1753-6405.13121 - 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
Peter Miller;Florentine Martino;Narelle Robertson;J. Stafford;M. Daube - 通讯作者:
M. Daube
Accounting, culture, and the state
会计、文化和国家
- DOI:
10.1016/j.cpa.2015.10.001 - 发表时间:
2016 - 期刊:
- 影响因子:5.1
- 作者:
Ingrid Jeacle;Peter Miller - 通讯作者:
Peter Miller
Epistaxis in COVID positive ICU patients, implications, and future interventions
- DOI:
10.1016/j.rmed.2024.107851 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Sarah Clark;Kristin Sheehan;Samantha Fabian;Timothy Immelman;Connie Liu;John Clinger;Peter Miller - 通讯作者:
Peter Miller
Peter Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Miller', 18)}}的其他基金
Universality in Nonlinear Waves and Related Topics
非线性波的普遍性及相关主题
- 批准号:
2204896 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
ShellEye-DEMO: Satellite monitoring for shellfish and finfish aquaculture: Domain expanded; Enhanced resolution; Marine insurance; Other species
ShellEye-DEMO:贝类和有鳍鱼类水产养殖卫星监测:领域扩大;
- 批准号:
NE/P011004/1 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Applied Analysis for Integrable Nonlinear Waves
可积非线性波的应用分析
- 批准号:
1513054 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
ShellEye: Satellite-based water quality bulletins for shellfish farms to support management decisions
ShellEye:贝类养殖场基于卫星的水质公告,支持管理决策
- 批准号:
BB/M026698/1 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Frontiers in Asymptotic Analysis for Integrable Nonlinear Waves
可积非线性波渐近分析前沿
- 批准号:
1206131 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Testing Information and Communication Technology (ICT) Recall Aids for Surveys of Personal Networks
博士论文研究:测试个人网络调查的信息和通信技术 (ICT) 回忆辅助工具
- 批准号:
1246942 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
FASTNEt - Fluxes Across the Sloping Topography of the North East Atlantic (PML Sections)
FASTNEt - 东北大西洋倾斜地形的通量(PML 部分)
- 批准号:
NE/I030151/1 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Asymptotic Problems in Nonlinear Waves and Beyond
非线性波及其以外的渐近问题
- 批准号:
0807653 - 财政年份:2008
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
- 批准号:
0354373 - 财政年份:2004
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
The Semiclassical Limit of the Focusing Nonlinear Schroedinger Equation
聚焦非线性薛定谔方程的半经典极限
- 批准号:
0103909 - 财政年份:2001
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似国自然基金
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
- 批准号:32300748
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
- 批准号:32270940
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
- 批准号:2021JJ31110
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
- 批准号:12004282
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
- 批准号:31970841
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
复微分方程的亚纯解和偏微分方程的rogue wave解
- 批准号:11701382
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
植物SCAR/WAVE复合体与线粒体协同调节的自噬机制及其对柑橘果实品质的影响
- 批准号:31772281
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
WAVE2调控SATB1促进Tfh细胞分化在系统性红斑狼疮发病机制中的研究
- 批准号:81673058
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Rossby Wave Breaking Archetypal Patterns, Processes and Projected Changes from the 20th (twentieth) to the 21st (twenty-first) Century
罗斯比浪潮打破了 20 世纪到 21 世纪的原型模式、过程和预计变化
- 批准号:
2148567 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Evolution patterns of slow slip events revealed with a combined analysis of seismic wave and geodetic data
地震波和大地测量数据结合分析揭示慢滑移事件的演化模式
- 批准号:
21K11792 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Analysis of Three-Dimensional Water-Wave Patterns via Exponential Asymptotics
通过指数渐近法对三维水波模式进行非线性分析
- 批准号:
2004589 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Mining Patterns and Changes of Wave Shapes for Efficiently Querying Periodic Data Streams
有效查询周期性数据流的挖掘模式和波形变化
- 批准号:
DE140100387 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative research: Two-dimensional wave patterns and physical applications of Kadomtsev-Petviashvili web-solitons
合作研究:Kadomtsev-Petviashvili 网孤子的二维波型和物理应用
- 批准号:
1410267 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative research: RUI: Two-dimensional wave patterns and physical applications of Kadomtsev-Petviashvili web-solitons
合作研究:RUI:Kadomtsev-Petviashvili 网孤子的二维波型和物理应用
- 批准号:
1410862 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Characterisation of the relationship between electrogram morphology and wave-front propagation patterns in humans with persistent atrial fibrillation through non-contact mapping.
通过非接触式测绘表征持续性心房颤动人类的电图形态与波前传播模式之间的关系。
- 批准号:
nhmrc : 1054220 - 财政年份:2013
- 资助金额:
$ 39万 - 项目类别:
Early Career Fellowships
The role of childhood dysregulated diurnal cortisol patterns in predicting trajectories of adolescent internalizing disorders: A multi-wave longitudinal study.
儿童昼夜皮质醇失调模式在预测青少年内化障碍轨迹中的作用:一项多波纵向研究。
- 批准号:
258471 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Studentship Programs
Spectral analysis and stability for wave patterns and multidimensional waves
波型和多维波的频谱分析和稳定性
- 批准号:
0906370 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Wind and Wave Patterns in the Earth's Ionosphere
地球电离层中的风和波浪模式
- 批准号:
0551107 - 财政年份:2006
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant