Universality in Nonlinear Waves and Related Topics

非线性波的普遍性及相关主题

基本信息

项目摘要

This project studies the phenomenon of universality in the context of models for the motion of large waves in several physical settings such as surface water waves and electromagnetic waves in optical fibers. Universality refers to situations in which the same or very similar wave patterns appear despite the waves being set into motion by quite different mechanisms, or even in quite different physical systems. For instance, rogue waves on the sea surface are frequently characterized as consisting of a large central peak with a distinctive dip on either side. It does not matter much the conditions under which the rogue wave appears — the pattern is nearly always the same. The aim of this research is to determine what patterns should be expected, as this knowledge can be used in applications ranging from device design to disaster mitigation, and why they occur. Furthermore, because modeling is a process that involves numerous ad-hoc assumptions, it is important to understand which features predicted by a model are independent of those assumptions, and universality gets to the heart of this question. Graduate students and early-career researchers will join the investigator in this study, which enhances its impact beyond scientific inquiry and into education and training of the next generation of scientists. Mathematically, the study of universality is related to asymptotic analysis, specifically involving double-scaling limits to localize the coordinates near a point of interest, while a parameter in the model or solution becomes large. The investigator will study such double-scaling limits in various asymptotic models for nonlinear waves given by integrable evolution equations. Broadening the scope slightly, several specific questions involving asymptotic analysis of mathematical models for nonlinear waves will be addressed, including (i) determining the small-dispersion asymptotics of solutions of the defocusing nonlinear Schrödinger equation and the intermediate long-wave and Benjamin-Ono equations; (ii) analyzing the features of a new family of transcendental solutions of the focusing nonlinear Schrödinger equation termed "rogue waves of infinite order"; (iii) studying the degeneration of specific solution families of Painlevé equations. The investigator will combine and further develop techniques from the fields of integrable systems and asymptotic analysis to address these questions. Anticipated outcomes include a first proof of universal wave breaking in the defocusing nonlinear Schrödinger equation, new results on the small-dispersion asymptotic behavior of solutions of the intermediate long-wave equation (a nonlocal model for internal waves in stratified fluids interpolating between the shallow-water Korteweg-de Vries limit and the deep-water Benjamin-Ono limit), development of a new analytical technique for asymptotic analysis of nonlocal Riemann-Hilbert problems, and the discovery of new information about the solution space of Painlevé equations and the focusing nonlinear Schrödinger equation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目在几种物理环境中的大波运动模型的背景下研究普遍性现象,例如地表水波和光纤中的电磁波。普遍性指的是,尽管波是由非常不同的机制,甚至是在非常不同的物理系统中启动的,但出现相同或非常相似的波型的情况。例如,海面上的无赖海浪经常被描述为由一个巨大的中心峰组成,两边都有一个明显的倾角。无赖波出现的条件并不重要--模式几乎总是相同的。这项研究的目的是确定应该预期的模式,因为这些知识可以用于从设备设计到减灾的各种应用,以及它们发生的原因。此外,由于建模是一个涉及大量特殊假设的过程,因此重要的是要了解模型预测的哪些功能独立于这些假设,并且通用性触及了这个问题的核心。研究生和职业生涯早期的研究人员将加入这项研究,这项研究将增强其影响,超越科学探索,进入下一代科学家的教育和培训。从数学上讲,普适性的研究与渐近分析有关,特别是当模型或解中的参数变大时,涉及双比例限制以定位关注点附近的坐标。研究人员将在由可积发展方程给出的非线性波的各种渐近模型中研究这种双标度极限。将范围略微扩大,将讨论涉及非线性波数学模型的渐近分析的几个具体问题,包括:(I)确定散焦非线性薛定谔方程和中间长波方程和Benjamin-Ono方程解的小色散渐近性;(Ii)分析聚焦非线性薛定谔方程的一族新的超越解的特征,称为“无穷级无赖波”;(Iii)研究Painlevé方程特解族的退化。研究人员将结合并进一步发展可积系统和渐近分析领域的技术来解决这些问题。预期的结果包括:首次证明了散焦的非线性薛定谔方程中的普遍波破裂,关于中间长波方程(在浅水Korteweg-de Vries极限和深水Benjamin-Ono极限之间内插的分层流体中的内波的非局部模型)解的小弥散渐近性态的新结果,发展了用于非局部Riemann-Hilbert问题的渐近分析的新的分析方法,以及关于Painlevé方程解空间和聚焦非线性薛定谔方程的新信息的发现。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the algebraic solutions of the Painlevé-III (D 7 ) equation
关于 Painlevé-III (D 7 ) 方程的代数解
  • DOI:
    10.1016/j.physd.2022.133493
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Buckingham, R.J.;Miller, P.D.
  • 通讯作者:
    Miller, P.D.
Large-Degree Asymptotics of Rational Painlevé-IV Solutions by the Isomonodromy Method
有理 Painlevé-IV 解的等单律法的大度渐近
  • DOI:
    10.1007/s00365-022-09586-1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Buckingham, Robert J.;Miller, Peter D.
  • 通讯作者:
    Miller, Peter D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Miller其他文献

Early and late-phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs. I. The association of disordered airway physiology to leukocyte infiltration.
非麻醉豚鼠过敏原激发后的早期和晚期支气管收缩。
Mobilizing the Consumer
动员消费者
  • DOI:
    10.1177/026327697014001001
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Miller;N. Rose
  • 通讯作者:
    N. Rose
Public opinion of alcohol industry corporate political activities
酒类行业企业政治活动舆情
Accounting, culture, and the state
会计、文化和国家
Epistaxis in COVID positive ICU patients, implications, and future interventions
  • DOI:
    10.1016/j.rmed.2024.107851
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah Clark;Kristin Sheehan;Samantha Fabian;Timothy Immelman;Connie Liu;John Clinger;Peter Miller
  • 通讯作者:
    Peter Miller

Peter Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Miller', 18)}}的其他基金

A Study of Wave Patterns
波形研究
  • 批准号:
    1812625
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
ShellEye-DEMO: Satellite monitoring for shellfish and finfish aquaculture: Domain expanded; Enhanced resolution; Marine insurance; Other species
ShellEye-DEMO:贝类和有鳍鱼类水产养殖卫星监测:领域扩大;
  • 批准号:
    NE/P011004/1
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Applied Analysis for Integrable Nonlinear Waves
可积非线性波的应用分析
  • 批准号:
    1513054
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ShellEye: Satellite-based water quality bulletins for shellfish farms to support management decisions
ShellEye:贝类养殖场基于卫星的水质公告,支持管理决策
  • 批准号:
    BB/M026698/1
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Frontiers in Asymptotic Analysis for Integrable Nonlinear Waves
可积非线性波渐近分析前沿
  • 批准号:
    1206131
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Testing Information and Communication Technology (ICT) Recall Aids for Surveys of Personal Networks
博士论文研究:测试个人网络调查的信息和通信技术 (ICT) 回忆辅助工具
  • 批准号:
    1246942
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
FASTNEt - Fluxes Across the Sloping Topography of the North East Atlantic (PML Sections)
FASTNEt - 东北大西洋倾斜地形的通量(PML 部分)
  • 批准号:
    NE/I030151/1
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Asymptotic Problems in Nonlinear Waves and Beyond
非线性波及其以外的渐近问题
  • 批准号:
    0807653
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
  • 批准号:
    0354373
  • 财政年份:
    2004
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
The Semiclassical Limit of the Focusing Nonlinear Schroedinger Equation
聚焦非线性薛定谔方程的半经典极限
  • 批准号:
    0103909
  • 财政年份:
    2001
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
  • 批准号:
    2339212
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Effect of nonlinear interaction between waves on abrupt bursts of emission in ultra high harmonic ion cyclotron frequency range
波间非线性相互作用对超高谐波离子回旋加速器频率范围内突然发射的影响
  • 批准号:
    23K03363
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer modelling of irregular nonlinear surface waves and their effects on offshore wind turbine structures
不规则非线性表面波的计算机建模及其对海上风力发电机结构的影响
  • 批准号:
    2889685
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
CAREER: Guiding and Confining Nonlinear Elastic Waves in Moiré Metastructures
职业:在莫尔超结构中引导和限制非线性弹性波
  • 批准号:
    2238072
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
  • 批准号:
    23K03174
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的数学分析
  • 批准号:
    22K20337
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of an input identification based on nonlinear control for seismic waves inducing critical responses, with its experimental validation
开发基于非线性控制的地震波诱发临界响应的输入识别方法并进行实验验证
  • 批准号:
    22K18838
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nonlinear Waves in Lattices and Metamaterials
晶格和超材料中的非线性波
  • 批准号:
    2204880
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Energetic Electron Nonlinear Interactions with Oblique Whistler-Mode Chorus Waves
合作研究:GEM--高能电子与斜惠斯勒模式合唱波的非线性相互作用
  • 批准号:
    2225121
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Mechanical Characterization of Nonlinear Soft Materials Using Surface Waves
使用表面波对非线性软材料进行机械表征
  • 批准号:
    2200353
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了