Applied Analysis for Integrable Nonlinear Waves
可积非线性波的应用分析
基本信息
- 批准号:1513054
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Waves in nature (for example, water waves or electromagnetic waves) can be modeled by solutions of certain differential equations that incorporate various physical processes into a mathematical framework that admits further detailed study in principle. But even with such a wave equation in hand, there remains the difficult task of deducing important information from the model, information that is needed to solve important problems of engineering that motivate the study of waves in the first place. One common approach is to use computers to solve the equations (approximately). However, such an approach is limited in scope to very concrete simulations involving particular initial conditions, and it holds only in parameter ranges in which the numerical methods can be accurate. On the other hand, there are other parameter regimes that are quite common (for example, the situation that electromagnetic waves can be approximated by light rays) in which the computer-based approach becomes difficult, and therefore one would like to have an alternative method of analysis. This project is aimed at developing such alternative methods of asymptotic analysis for wave propagation problems that are nonlinear (so that large waves can be accurately modeled) but that nonetheless admit a kind of transform relating them to linear problems (for which the familiar superposition principle applies). One application of such theoretical analysis would be to describe the evolution of sub-surface oil plumes caused by an oil leak like the Deepwater Horizon disaster. This project is an attempt to place completely integrable nonlinear wave equations on a similar footing as constant-coefficient linear equations, from the point of view of asymptotic analysis (i.e., to further develop nonlinear analogues of the classical methods of stationary phase and steepest descent for integrals). The specific problems to be addressed include the study of the inverse-scattering transform for the Benjamin-Ono equation (a nonlocal integrable model for internal gravity waves) in the small-dispersion limit, the study of the resonant interaction of wave packets through a quadratic nonlinearity in the semiclassical limit, the study of an analogue of the defocusing nonlinear Schroedinger equation describing waves in two spatial dimensions in the semiclassical limit, the study of dynamical stability of so-called rogue waves, the study of mixed initial/boundary-value problems for integrable equations in the semiclassical limit, and the investigation of "universal wave patterns", analogues to wave propagation problems of universal phase transitions in statistical mechanics and mathematical physics.
自然界中的波(例如,水波或电磁波)可以通过某些微分方程的解来建模,这些微分方程将各种物理过程合并到一个数学框架中,原则上允许进一步详细研究。 但是,即使有了这样一个波动方程,仍然存在从模型中推导重要信息的艰巨任务,这些信息是解决重要工程问题所需的,这些问题首先激发了对波动的研究。 一种常见的方法是使用计算机来求解方程(近似)。然而,这种方法的范围是有限的,非常具体的模拟,涉及特定的初始条件,它只适用于参数范围内的数值方法可以是准确的。 另一方面,还有其他相当常见的参数状态(例如,电磁波可以近似为光线的情况),其中基于计算机的方法变得困难,因此人们希望有一种替代的分析方法。 该项目旨在为非线性波传播问题开发渐近分析的替代方法(以便可以精确地模拟大型波),但仍然允许将其与线性问题(熟悉的叠加原理适用于线性问题)相关联的一种变换。 这种理论分析的一个应用是描述由深水地平线灾难等石油泄漏引起的地下石油羽流的演变。 这个项目是试图把完全可积的非线性波动方程放在与常系数线性方程类似的基础上,从渐近分析的角度来看(即,以进一步发展积分的定相和最速下降的经典方法的非线性类似物)。 具体问题包括Benjamin-Ono方程的逆散射变换研究(重力内波的非局部可积模型),通过半经典极限中的二次非线性研究波包的共振相互作用,在半经典极限下,对描述二维空间波动的散焦非线性薛定谔方程的模拟进行研究,研究所谓的流氓波的动力学稳定性,研究半经典极限中可积方程的混合初始/边界值问题,以及研究“通用波模式”,类似于统计力学和数学物理中通用相变的波传播问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Miller其他文献
Early and late-phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs. I. The association of disordered airway physiology to leukocyte infiltration.
非麻醉豚鼠过敏原激发后的早期和晚期支气管收缩。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
P. A. Hutson;M K Church;Timothy P. Clay;Peter Miller;S. Holgate - 通讯作者:
S. Holgate
Mobilizing the Consumer
动员消费者
- DOI:
10.1177/026327697014001001 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Peter Miller;N. Rose - 通讯作者:
N. Rose
Public opinion of alcohol industry corporate political activities
酒类行业企业政治活动舆情
- DOI:
10.1111/1753-6405.13121 - 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
Peter Miller;Florentine Martino;Narelle Robertson;J. Stafford;M. Daube - 通讯作者:
M. Daube
Accounting, culture, and the state
会计、文化和国家
- DOI:
10.1016/j.cpa.2015.10.001 - 发表时间:
2016 - 期刊:
- 影响因子:5.1
- 作者:
Ingrid Jeacle;Peter Miller - 通讯作者:
Peter Miller
Epistaxis in COVID positive ICU patients, implications, and future interventions
- DOI:
10.1016/j.rmed.2024.107851 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Sarah Clark;Kristin Sheehan;Samantha Fabian;Timothy Immelman;Connie Liu;John Clinger;Peter Miller - 通讯作者:
Peter Miller
Peter Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Miller', 18)}}的其他基金
Universality in Nonlinear Waves and Related Topics
非线性波的普遍性及相关主题
- 批准号:
2204896 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
ShellEye-DEMO: Satellite monitoring for shellfish and finfish aquaculture: Domain expanded; Enhanced resolution; Marine insurance; Other species
ShellEye-DEMO:贝类和有鳍鱼类水产养殖卫星监测:领域扩大;
- 批准号:
NE/P011004/1 - 财政年份:2017
- 资助金额:
$ 38万 - 项目类别:
Research Grant
ShellEye: Satellite-based water quality bulletins for shellfish farms to support management decisions
ShellEye:贝类养殖场基于卫星的水质公告,支持管理决策
- 批准号:
BB/M026698/1 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Research Grant
Frontiers in Asymptotic Analysis for Integrable Nonlinear Waves
可积非线性波渐近分析前沿
- 批准号:
1206131 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Testing Information and Communication Technology (ICT) Recall Aids for Surveys of Personal Networks
博士论文研究:测试个人网络调查的信息和通信技术 (ICT) 回忆辅助工具
- 批准号:
1246942 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
FASTNEt - Fluxes Across the Sloping Topography of the North East Atlantic (PML Sections)
FASTNEt - 东北大西洋倾斜地形的通量(PML 部分)
- 批准号:
NE/I030151/1 - 财政年份:2011
- 资助金额:
$ 38万 - 项目类别:
Research Grant
Asymptotic Problems in Nonlinear Waves and Beyond
非线性波及其以外的渐近问题
- 批准号:
0807653 - 财政年份:2008
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
FRG: Collaborative Research in Semiclassical Asymptotic Questions in Integrable Nonlinear Wave Theory
FRG:可积非线性波理论中半经典渐近问题的合作研究
- 批准号:
0354373 - 财政年份:2004
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
The Semiclassical Limit of the Focusing Nonlinear Schroedinger Equation
聚焦非线性薛定谔方程的半经典极限
- 批准号:
0103909 - 财政年份:2001
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Constructions of discrete integrable systems with eigenvalue preserving transformations and their asymptotic analysis
具有特征值保持变换的离散可积系统的构造及其渐近分析
- 批准号:
21K13844 - 财政年份:2021
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Asymptotic and global analysis for integrable systems with irregular singularities and various aspects of the moduli space
具有不规则奇点和模空间各个方面的可积系统的渐近和全局分析
- 批准号:
20H01810 - 财政年份:2020
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of discrete Integrable systems by probability theory based on Pitman's transformation
基于Pitman变换的离散可积系统概率论分析
- 批准号:
19H01792 - 财政年份:2019
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on symmetric functions by algebraic analysis of quantum integrable models
通过量子可积模型的代数分析研究对称函数
- 批准号:
18K03205 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of computational algorithms for nonlinear wave analysis based on discrete methods for integrable systems
基于可积系统离散方法的非线性波分析计算算法的开发
- 批准号:
18K03435 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of rigidity and global structure for integrable systems by using normal form theory
利用范式理论分析可积系统的刚度和全局结构
- 批准号:
16K05173 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Perturbative analysis from the integrable limits on the dynamics of fractional excitations in quantum spin liquids
量子自旋液体分数激发动力学可积极限的微扰分析
- 批准号:
16H04026 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Random Structures and Integrable Systems: Analysis and Applications
随机结构与可积系统:分析与应用
- 批准号:
1615921 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Analysis of moduli structure of completely integrable systems and related geometry
完全可积系统的模结构及相关几何分析
- 批准号:
15H03628 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)