Many-body Scattering and Symmetric Spaces
多体散射和对称空间
基本信息
- 批准号:0201092
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Andras Vasy, MITDMS-0201092Abstract:The object of the proposed research is the geometric study of scattering theory. This encompasses such apparently distant areas as many-body scattering and the Laplacian on symmetric spaces. Powerful geometric techniques recently adapted from the study of hyperbolicequations have already played a major role in the detailed study of many-body scattering, which describes how quantum particles interact, e.g. in an accelerator. The proposed project will employ these microlocal techniques to explore new problems in many-body scattering, and to bringinsights to analysis on symmetric spaces. These problems include the detailed study of the behavior of particles at threshold energies, which are energy levels where new configurations of particles become accessible. For many chemical phenomena Planck's constant, h, may be considered small, motivating the study of semiclassical many-body phenomena. A particular example is the spectral shift function, which has been the subject of an ongoing joint project of the PI with Xue Ping Wang. Another area of proposed research, joint with Gunther Uhlmann, is finite energy inverse many-body scattering, i.e. whether one can determine the interaction between particles from the scattering matrices, which are objects describing the outcome of scattering experiments. Perhaps surprisingly, there are very algebraic objects which are analogous to many-body problems, namely higher rank symmetric spaces. The structureof so-called flats in these spaces is very similar to the structure of the configuration space in many-body scattering, with the walls of the Weyl chambers playing the role of collision planes. In a joint project, Rafe Mazzeo and the PI plan to use the constructive techniques from many-bodyscattering to obtain the full asymptotic behavior of various analytic objects on these spaces, showing that many of the phenomena observed there have their counterparts in much greater generality.Indeed, many people are familiar with the following two descriptions of the propagation of light. First, in geometric optics, light propagates in straight lines, reflecting from surfaces according to Snell's law. That is, the angles of incidence and of reflection are the same, as if lightconsisted of little billiard balls. Second, light can be described by the wave equation, its propagation thus being similar to that of water waves. There is a close relationship between these two viewpoints. Namely, for solutions of the wave equation, the propagation of sharp signals (or `singularities' of signals), which are the signals used to carry information, is precisely described by the simpler geometric optics picture. There is a similar correspondence between classical and quantum mechanics in many-particle interactions. Namely, for quantum particles theevolution of wave functions `at infinity' is almost described by the classical picture, as was proved previously by the PI. The only divergence between the classical and the quantum pictures is the emergence of bound states. For example, for a system consisting of two protons and twoelectrons, one of the protons and one of the electrons can form a hydrogen atom -- which may in turn break up if an electron with high energy hits it. In this proposal the PI will in part use these results, and related tools, for further investigation of many-body phenomena, such as examining the quantum-classical correspondence more precisely for small Planck's constant, and analyzing whether one can determine the interactions between particles from the result of a scattering experiment, and in part to extend such results to more geometric settings. These results are thus related to important questions in physics and chemistry.
PI:Andras Vasy,MITDMS-0201092摘要:所提出的研究的对象是散射理论的几何研究。这包括了许多明显遥远的领域,如多体散射和对称空间上的拉普拉斯算子。最近从双曲方程的研究中改编而来的强大的几何技术已经在多体散射的详细研究中发挥了重要作用,多体散射描述了量子粒子如何相互作用,例如在加速器中。该项目将利用这些微局域技术来探索多体散射中的新问题,并为对称空间的分析带来新的见解。这些问题包括对粒子在阈值能量下的行为的详细研究,阈值能量是可以获得新粒子配置的能量水平。对于许多化学现象来说,普朗克常数h可能被认为是很小的,这激发了半经典多体现象的研究。一个特别的例子是光谱位移函数,这一直是PI与Xue Ping Wang正在进行的联合项目的主题。与冈瑟·乌尔曼联合提出的另一个研究领域是有限能量逆多体散射,即是否可以从散射矩阵确定粒子之间的相互作用,散射矩阵是描述散射实验结果的对象。也许令人惊讶的是,有非常代数的对象是类似的多体问题,即更高的秩对称空间。这些空间中所谓的平面的结构与多体散射中的位形空间的结构非常相似,外尔室的壁扮演着碰撞平面的角色。在一个联合项目中,Rafe Mazzeo和PI计划使用多体散射的构造性技术来获得这些空间上各种分析对象的完整渐近行为,表明在那里观察到的许多现象都有更大的普遍性。事实上,许多人都熟悉以下两种光传播的描述。首先,在几何光学中,光以直线传播,根据斯涅耳定律从表面反射。也就是说,入射角和反射角是相同的,就好像光是由小台球组成的。其次,光可以用波动方程来描述,因此它的传播与水波的传播相似。 这两种观点之间有着密切的联系。也就是说,对于波动方程的解,尖锐信号(或信号的“奇点”)的传播,即用于携带信息的信号,可以用更简单的几何光学图像精确地描述。在多粒子相互作用中,经典力学和量子力学之间也有类似的对应关系。也就是说,对于量子粒子,波函数在无穷远处的演化几乎可以用经典图像来描述,正如PI先前所证明的那样。经典图像和量子图像之间唯一的分歧是束缚态的出现。例如,对于一个由两个质子和两个电子组成的系统,其中一个质子和一个电子可以形成一个氢原子-如果一个高能电子击中它,它可能会反过来分裂。在这个提议中,PI将部分使用这些结果和相关工具,用于进一步研究多体现象,例如更精确地检查小普朗克常数的量子-经典对应,以及分析是否可以从散射实验的结果确定粒子之间的相互作用,并且部分地将这样的结果扩展到更多的几何设置。因此,这些结果与物理和化学中的重要问题有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andras Vasy其他文献
Andras Vasy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andras Vasy', 18)}}的其他基金
Conference: Geometric Applications of Microlocal Analysis
会议:微局部分析的几何应用
- 批准号:
2210936 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Microlocal Analysis of Linear and Nonlinear Problems
线性和非线性问题的微局部分析
- 批准号:
1664683 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference Proposal: Modern Theory of Wave Equations Program at the Erwin Schrodinger Institute
会议提案:埃尔文·薛定谔研究所的现代波动方程理论项目
- 批准号:
1465291 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Microlocal analysis for waves and inverse problems
波和反问题的微局域分析
- 批准号:
1361432 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference on Microlocal Methods in Mathematical Physics and Global Analysis
数学物理和全局分析中的微局域方法会议
- 批准号:
1067924 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Propagation Phenomena for Waves and Scattering
波和散射的传播现象
- 批准号:
1068742 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometric Analysis -- A Conference in Luminy, France, Winter 2011
几何分析——2011 年冬季在法国 Luminy 举行的会议
- 批准号:
1062288 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CMG: Nonlinear Elastic-Wave Inverse Scattering and Tomography - from Cracks to Mantle Convection
CMG:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
- 批准号:
1025259 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
cTAGE5介导B-body的形成调控早期卵母细胞成熟的机制研究
- 批准号:32360182
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
水稻条纹病毒抓帽时的非结构性偏向及其与P-body的关系研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
ZIP调控Cajal body形成及细胞稳态维持的机制研究
- 批准号:32160154
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
EIF4ENIF1基因突变通过影响P-body液-液相分离进而导致早发性卵巢功能不全的分子机制研究
- 批准号:82171628
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
围绕Cajal body研究双生病毒编码的V2蛋白调控植物DNA甲基化的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cajal body重构染色质三维结构促进肝癌发生的作用和机制研究
- 批准号:82060512
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
ALG-2调控纤毛发生的分子机制研究
- 批准号:31900538
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
DNMT3A在子痫前期发生中的深入研究:基因body区甲基化异常的作用和机制
- 批准号:81871178
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
- 批准号:
23K03420 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral and scattering theory for many body quantum systems in electromagnetic fields
电磁场中许多体量子系统的光谱和散射理论
- 批准号:
23540201 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solving quantum nonequilibrium electric conduction as a many-body scattering problem
解决量子非平衡导电作为多体散射问题
- 批准号:
22340110 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Decay, scattering, and decoherence in many-body quanum systems
多体量子系统中的衰变、散射和退相干
- 批准号:
40341746 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Units
Many-body Scattering and Symmetric Spaces
多体散射和对称空间
- 批准号:
0733485 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
Electron scattering and relativistic many-body problems
电子散射和相对论多体问题
- 批准号:
156206-1998 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Individual
Electron scattering and relativistic many-body problems
电子散射和相对论多体问题
- 批准号:
156206-1998 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Individual
Electron scattering and relativistic many-body problems
电子散射和相对论多体问题
- 批准号:
156206-1998 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Individual
Electron scattering and relativistic many-body problems
电子散射和相对论多体问题
- 批准号:
156206-1998 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Individual














{{item.name}}会员




