Quasiconformal Mappings, Harmonic Analysis and Nonlinear Elasticity from the Prospective of PDEs

偏微分方程视角下的拟共形映射、调和分析和非线性弹性

基本信息

  • 批准号:
    9706611
  • 负责人:
  • 金额:
    $ 14.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-01 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

Iwaniec ABSTRACT Iwaniec will pursue questions about quasiregular mappings which arise as generalizations of geometric aspects of analytic functions of one complex variable. The mappings in question solve important first order systems of PDEs analogous in many respects to the Cauchy-Riemann equations. The solutions of these systems can be viewed as "absolute" minimizers of certain energy functionals. It is striking how tight the connection is between quasiregular mappings and the recent development of the nonlinear elasticity theory whose mathematical principles were already formulated by S.S. Antman and J. Ball in 1976-77. Roughly speaking, the theory of elasticity studies mappings, referred to as deformations of elastic bodies, which minimize the so-called stored energy functionals. These functionals are not always convex and the deformations need not be quasiconformal but the governing PDEs are much the same. The Jacobian determinant, in particular, has been subjected to a great deal of investigation. Ths project accounts for this study together with some generalizations concerning wedge products of closed differential forms. Quasiconformal mappings generalize to higher dimensions the concept of analytic functions that is so fruitful for science and engineering in two space dimensions. Trying to extend this theory to three or more space dimensions proved quite difficult and the mathematics of such extension is being developed now. Iwaniec will work on how to extend familiar concepts in the plane, like degree, to similar concepts in space. The theory of non linear elasticity, among others, will benefit from this developments.
伊万尼克 摘要 Iwaniec将探讨有关拟正则映射的问题, 作为解析函数的几何方面的推广而出现 一个复杂的变量。映射问题解决重要的一阶系统的偏微分方程类似的柯西-黎曼方程在许多方面。这些系统的解可以看作是某些能量泛函的“绝对”极小化。令人惊讶的是,拟正则映射与非线性弹性理论的最新发展之间的联系是多么紧密,非线性弹性理论的数学原理已经由S.S.安特曼 和J.鲍尔在1976-77年。粗略地说,弹性理论 研究映射,称为弹性体的变形, 其最小化所谓的储能泛函。这些 泛函并不总是凸的,并且变形不需要是 但支配偏微分方程是相同的。的 特别是雅可比行列式, 调查的交易。 本项目是本研究的一部分 以及一些关于楔积的推广 闭微分形式 拟共形映射将解析函数的概念推广到高维空间,这在二维空间的科学和工程中是如此富有成果。试图将这一理论扩展到三个或更多的空间维度证明是相当困难的,这种扩展的数学现在正在发展。Iwaniec将致力于如何将平面中熟悉的概念(如度)扩展到空间中的类似概念。非线性弹性理论将从这些发展中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tadeusz Iwaniec其他文献

${\cal H}^1$ -estimates of Jacobians by subdeterminants
  • DOI:
    10.1007/s00208-002-0341-5
  • 发表时间:
    2002-10-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Tadeusz Iwaniec;Jani Onninen
  • 通讯作者:
    Jani Onninen
Div-curl fields of finite distortion
  • DOI:
    10.1016/s0764-4442(98)80160-2
  • 发表时间:
    1998-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tadeusz Iwaniec;Carlo Sbordone
  • 通讯作者:
    Carlo Sbordone
Dynamics of Quasiconformal Fields
On Minimisers of $$L^p$$ -mean Distortion

Tadeusz Iwaniec的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tadeusz Iwaniec', 18)}}的其他基金

Variational approach to Geometric Function Theorem, Nonlinear PDEs and Hyperelasticy
几何函数定理、非线性偏微分方程和超弹性的变分法
  • 批准号:
    1802107
  • 财政年份:
    2018
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Conference: Harmonic Analysis, Complex Analysis, Spectral Theory and All That
会议:调和分析、复分析、谱理论等等
  • 批准号:
    1600705
  • 财政年份:
    2016
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Sobolev Mappings and Energy-Integrals in Mathematical Models of Nonlinear Elasticity
非线性弹性数学模型中的索博列夫映射和能量积分
  • 批准号:
    1301558
  • 财政年份:
    2013
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
  • 批准号:
    0800416
  • 财政年份:
    2008
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Geometric Analysis of Deformations of Finite Distortiion via Nonlinear PDEs and Null Lagrangians
通过非线性偏微分方程和零拉格朗日量对有限畸变变形进行几何分析
  • 批准号:
    0301582
  • 财政年份:
    2003
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
  • 批准号:
    0244297
  • 财政年份:
    2003
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
  • 批准号:
    0070807
  • 财政年份:
    2000
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Quasiconformal Analysis and Harmonic Integrals with Applications to Nonlinear Elasticity
数学科学:拟共形分析和调和积分及其在非线性弹性中的应用
  • 批准号:
    9401104
  • 财政年份:
    1994
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
  • 批准号:
    9208296
  • 财政年份:
    1992
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity Problems for Variational Integrals and Quasiregular Mappings
数学科学:变分积分和拟正则映射的正则问题
  • 批准号:
    9007946
  • 财政年份:
    1990
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant

相似海外基金

Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
  • 批准号:
    2350530
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
  • 批准号:
    2323531
  • 财政年份:
    2023
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
Japanese Brazilian Literary Mappings of Asian-Latin American Relations: Bridging Borders Across Areas
日本巴西文学对亚洲与拉丁美洲关系的映射:跨越地区的边界
  • 批准号:
    23K18671
  • 财政年份:
    2023
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Local Geometry of Real and Complex Analytic Mappings
实数和复数解析映射的局部几何
  • 批准号:
    RGPIN-2018-04239
  • 财政年份:
    2022
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Quasiconformal and Sobolev mappings on metric measure spaces
度量测度空间上的拟共形映射和 Sobolev 映射
  • 批准号:
    22K13947
  • 财政年份:
    2022
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
  • 批准号:
    22K03356
  • 财政年份:
    2022
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Black hole thermodynamics, spacetime conformal mappings, cosmological perturbations, and modified gravity.
黑洞热力学、时空共形映射、宇宙扰动和修正引力。
  • 批准号:
    RGPIN-2017-05388
  • 财政年份:
    2022
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating Learning Action Mappings for Control Tasks in Reinforcement Learning and Teleoperation
研究强化学习和远程操作中控制任务的学习动作映射
  • 批准号:
    568768-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Mappings and Sequences over Finite Fields
有限域上的映射和序列
  • 批准号:
    RGPIN-2018-05328
  • 财政年份:
    2022
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Discovery Grants Program - Individual
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
  • 批准号:
    2152487
  • 财政年份:
    2022
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了