Geometric Analysis of Deformations of Finite Distortiion via Nonlinear PDEs and Null Lagrangians
通过非线性偏微分方程和零拉格朗日量对有限畸变变形进行几何分析
基本信息
- 批准号:0301582
- 负责人:
- 金额:$ 35.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Abstract: DMA 0301582T Iwaniec, Syracuse University Intellectual Merit. Prominent advances in analysis will continue toenhance both theory and applications. In this challenge, there is enormousopportunity for contributions from geometric function theory andnonlinear partial differential equations. Broadly speaking, this theory isabout weakly differentiable mappings which distort small circles in a controlled manner (finite distortion). It elevates allthe analytic and geometric spirit of holomorphic functions in the complexplane to higher dimensions; domains of the Euclidean n-space orRiemannian manifolds, Mappings of finite distortion owe much of theirimportance to recent developments inseveral fields of applied mathematics: continuum mechanics, nonlinearelasticity, material science, composites with microstructure, crystals,and so forth. However, in this proposal we focus on practical questionsonly through mathematical formulations, sometimes without proclaimingdefinite answers. We emphasize the fundamental role of the Jacobiandeterminant and other nonlinear differential expressions, called nullLagrangians, which have driven (over the past twelve years) a veryproductive study of mappings with unbounded distortion. The presentknowledge of null Lagrangians will tell us something about the regularityand topological behavior of those mappings. This also brings us closer tothe methods of harmonic analysis and nonlinear partial differential equations. However, we departfrom the earlier theories, which are governed byuniformly elliptic systems, and move into the realm of degenerate ellipticequations, where important new applications lie. Broader Impact.Hopefully this proposal gives some appreciation of thediversity of applications and directions in which current research of thePI is moving, as well as a glimpse of the substantial body of joint workwith young scholars. It is at this point where the proposed research meetsthe broader impact criteria, such as: effective training and educationalmaterials, enhancing partnerships, participation of under-representedgroups from non-PhD granting institutions in the USA and abroad, women andmen. The Principal Investigator plans to organize a conference at Syracuse to bring togetherresearchers in geometric function theory and in applied areas. Theproposed program reflects continued efforts of the PI to reach outgraduate students. In the final analysis, education is the path toopportunities for countless individuals, and the mathematical community asa whole is the beneficiary.
项目摘要:DMA 0301582T Iwaniec,锡拉丘兹大学智力功勋。分析领域的显著进步将继续促进理论和应用的发展。在这一挑战中,几何函数理论和非线性偏微分方程有巨大的贡献机会。广义地说,这个理论是关于弱可微映射,它以受控的方式扭曲小圆(有限扭曲)。它将复平面上全纯函数的所有解析和几何精神提升到更高的维度;欧几里得n空间或黎曼流形的区域、有限变形映射在很大程度上归功于应用数学的几个领域的最新发展:连续介质力学、非线性相对论、材料科学、微结构复合材料、晶体等。然而,在这个提案中,我们只通过数学公式来关注实际问题,有时没有宣布明确的答案。我们强调雅可比行列式和其他称为零拉格朗日的非线性微分表达式的基本作用,在过去的12年里,它们推动了对具有无界失真的映射的非常富有成效的研究。零拉格朗日的现有知识将告诉我们一些关于这些映射的正则性和拓扑行为的信息。这也使我们更接近调和分析和非线性偏微分方程的方法。然而,我们摆脱了由一致椭圆组支配的早期理论,进入退化椭圆方程域,在那里有重要的新应用。更广泛的影响。希望这项建议能对当前对国际和平研究所的应用和研究方向的多样性给予一些赞赏,并使人们得以一窥与年轻学者的大量合作。正是在这一点上,拟议的研究符合更广泛的影响标准,如:有效的培训和教育材料,加强伙伴关系,美国和国外非博士学位授予机构代表不足的群体的参与,女性和男性。首席研究人员计划在锡拉丘兹组织一次会议,将几何函数理论和应用领域的研究人员聚集在一起。拟议的计划反映了PI为接触研究生所做的持续努力。归根结底,教育是无数人获得机会的途径,而整个数学界是受益者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tadeusz Iwaniec其他文献
${\cal H}^1$ -estimates of Jacobians by subdeterminants
- DOI:
10.1007/s00208-002-0341-5 - 发表时间:
2002-10-01 - 期刊:
- 影响因子:1.400
- 作者:
Tadeusz Iwaniec;Jani Onninen - 通讯作者:
Jani Onninen
Div-curl fields of finite distortion
- DOI:
10.1016/s0764-4442(98)80160-2 - 发表时间:
1998-10-01 - 期刊:
- 影响因子:
- 作者:
Tadeusz Iwaniec;Carlo Sbordone - 通讯作者:
Carlo Sbordone
Dynamics of Quasiconformal Fields
- DOI:
10.1007/s10884-010-9203-0 - 发表时间:
2010-12-24 - 期刊:
- 影响因子:1.300
- 作者:
Tadeusz Iwaniec;Leonid V. Kovalev;Jani Onninen - 通讯作者:
Jani Onninen
On Minimisers of $$L^p$$ -mean Distortion
- DOI:
10.1007/s40315-014-0063-1 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:0.700
- 作者:
Tadeusz Iwaniec;Gaven Martin;Jani Onninen - 通讯作者:
Jani Onninen
Tadeusz Iwaniec的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tadeusz Iwaniec', 18)}}的其他基金
Variational approach to Geometric Function Theorem, Nonlinear PDEs and Hyperelasticy
几何函数定理、非线性偏微分方程和超弹性的变分法
- 批准号:
1802107 - 财政年份:2018
- 资助金额:
$ 35.93万 - 项目类别:
Continuing Grant
Conference: Harmonic Analysis, Complex Analysis, Spectral Theory and All That
会议:调和分析、复分析、谱理论等等
- 批准号:
1600705 - 财政年份:2016
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant
Sobolev Mappings and Energy-Integrals in Mathematical Models of Nonlinear Elasticity
非线性弹性数学模型中的索博列夫映射和能量积分
- 批准号:
1301558 - 财政年份:2013
- 资助金额:
$ 35.93万 - 项目类别:
Continuing Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
- 批准号:
0800416 - 财政年份:2008
- 资助金额:
$ 35.93万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244297 - 财政年份:2003
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant
Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
- 批准号:
0070807 - 财政年份:2000
- 资助金额:
$ 35.93万 - 项目类别:
Continuing Grant
Quasiconformal Mappings, Harmonic Analysis and Nonlinear Elasticity from the Prospective of PDEs
偏微分方程视角下的拟共形映射、调和分析和非线性弹性
- 批准号:
9706611 - 财政年份:1997
- 资助金额:
$ 35.93万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quasiconformal Analysis and Harmonic Integrals with Applications to Nonlinear Elasticity
数学科学:拟共形分析和调和积分及其在非线性弹性中的应用
- 批准号:
9401104 - 财政年份:1994
- 资助金额:
$ 35.93万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
- 批准号:
9208296 - 财政年份:1992
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Problems for Variational Integrals and Quasiregular Mappings
数学科学:变分积分和拟正则映射的正则问题
- 批准号:
9007946 - 财政年份:1990
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic analysis of deformations of non-isolated singularities, computational complex analysis and algorithms
非孤立奇点变形的代数分析、计算复杂性分析和算法
- 批准号:
22K03334 - 财政年份:2022
- 资助金额:
$ 35.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large-N analysis of irrelevant deformations of quantum field theory and their non-perturbative aspects
量子场论的不相关变形及其非微扰方面的大 N 分析
- 批准号:
21J14825 - 财政年份:2021
- 资助金额:
$ 35.93万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis of the anisotropy influence on quasistatic and cyclic deformations of nickel base alloys by combining FEM methods with variational image processing
有限元方法与变分图像处理相结合分析各向异性对镍基合金准静态和循环变形的影响
- 批准号:
427779577 - 财政年份:2019
- 资助金额:
$ 35.93万 - 项目类别:
Research Grants
Efficient algorithms in computational algebraic analysis and deformations of singularities
计算代数分析和奇点变形的高效算法
- 批准号:
18K03214 - 财政年份:2018
- 资助金额:
$ 35.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Optical Measurement and Analysis of Dynamic Large Deformations of Mechanical Metamaterials
EAGER:机械超材料动态大变形的光学测量和分析
- 批准号:
1719728 - 财政年份:2017
- 资助金额:
$ 35.93万 - 项目类别:
Standard Grant
Seismic analysis of cracking and deformations in concrete gravity dams
混凝土重力坝裂缝变形抗震分析
- 批准号:
LP160101229 - 财政年份:2017
- 资助金额:
$ 35.93万 - 项目类别:
Linkage Projects
CAREER: Deformations in statistics, cosmology and image analysis
职业:统计、宇宙学和图像分析中的变形
- 批准号:
1252795 - 财政年份:2013
- 资助金额:
$ 35.93万 - 项目类别:
Continuing Grant
1. A comprehensive model for the description of biomembrane morphology induced by trans-membrane proteins. 2. An analysis of fluid-saturated porous media undergoing finite deformations.
1. 描述跨膜蛋白诱导的生物膜形态的综合模型。
- 批准号:
419855-2012 - 财政年份:2013
- 资助金额:
$ 35.93万 - 项目类别:
Postdoctoral Fellowships
Image-Based Quantification and Analysis of Longitudinal Lung Nodule Deformations
基于图像的纵向肺结节变形的量化和分析
- 批准号:
8521659 - 财政年份:2013
- 资助金额:
$ 35.93万 - 项目类别:
Image-Based Quantification and Analysis of Longitudinal Lung Nodule Deformations
基于图像的纵向肺结节变形的量化和分析
- 批准号:
8706864 - 财政年份:2013
- 资助金额:
$ 35.93万 - 项目类别: