Variational Problems in Analysis and Physics
分析和物理中的变分问题
基本信息
- 批准号:1856645
- 负责人:
- 金额:$ 28.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of mathematical physics is to provide a well reasoned connection between the world around us and the laws of physics. We understand why matter is extended on the basis of non-relativistic quantum mechanics. We are able to explain why certain materials change their quality when the temperature is lowered, as for example, when water turns to ice. There are, however, many phenomena that are not understood in a rigorous way. It is an everyday experience that physical systems tend towards equilibrium: Hot coffee cools by giving up energy to the environment until the temperatures are the same. Symmetry can be broken; for instance matter that appears to be homogeneous at high temperature tends to loose its homogeneity, that is, it forms clumps when cooled down. Physical systems try to achieve a state of lowest energy. Central questions are how to describe this state and how the system makes the transition. How does hot coffee approach an equilibrium with its environment by cooling down? How can matter lower its energy by transitioning to a less homogeneous shape? Another example, maybe less obvious, is a heat-conducting rod with one end held at a high temperature and the other at low temperature. This system is not in equilibrium but in a steady state; heat keeps flowing from hot to cold. Although a very old problem, there is no satisfactory mathematically-rigorous microscopic explanation for this observation. The aim of this proposal is to study these questions in specific mathematical and physical models. Some of these are large physical systems with many interacting agents. Others are, from a superficial perspective, quite simple, such as a single charged particle in a magnet. Finding answers to these questions requires new mathematical insights. An important feature of the project is to exploit the interaction of physical insight and mathematical techniques. This interdisciplinary quality makes it an ideal training ground for students at all levels.The project interweaves several strands of mathematical physics: non-equilibrium statistical mechanics through classical and quantum mechanical master equations, variational problems involving magnetic fields and more general vector fields as well as charged systems interacting with a classical radiation field. The investigation has variational inequalities as a common theme. One endeavor is to carry over recent robust advances concerning approach to equilibrium to other problems, both in the classical and quantum mechanical realm. Likewise, the gap for Kac type master equations for realistic models is now within reach. The Kac master equation is ideal for approximating thermostats by finite reservoirs. The PI will investigate the properties of the non-equilibrium steady state (NESS) for a system of two thermostats at different temperatures. The next step is to study the approximation of such systems by finite reservoirs, in particular determining the various time scales over which these approximations hold. A wide open area is the calculus of variations involving vector fields. This project will investigate a class of conformally invariant inequalities that includes the computation of the sharp constants. The goal is to use these insights to shed some light on systems with magnetic fields where the wave function is complex. A different but closely related problem is the analysis of the Maxwell-Pauli-Coulomb equations for supercritical charges. The focus of this inquiry will be on the question of whether there is blow up of solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学物理的目的是在我们周围的世界和物理定律之间提供一个合理的联系。 我们理解为什么物质是在非相对论量子力学的基础上扩展的。我们能够解释为什么某些物质在温度降低时会改变它们的性质,例如,当水变成冰时。然而,有许多现象并没有被严格地理解。 物理系统趋于平衡是一种日常经验:热咖啡通过向环境释放能量来冷却,直到温度相同。对称可以被打破;例如,在高温下看起来是均匀的物质往往会失去其均匀性,也就是说,当冷却下来时,它会形成团块。 物理系统试图达到最低能量的状态。 核心问题是如何描述这种状态以及系统如何进行转换。 热咖啡是如何通过冷却来达到与环境的平衡的? 物质如何通过转变成不那么均匀的形状来降低能量?另一个例子,可能不太明显,是一个导热棒,一端保持在高温下,另一端保持在低温下。这个系统不是处于平衡状态,而是处于稳定状态;热量不断从热到冷流动。 虽然这是一个非常古老的问题,但对于这一观察结果还没有令人满意的严格的微观解释。 本建议的目的是在特定的数学和物理模型中研究这些问题。 其中一些是具有许多相互作用的代理的大型物理系统。 从表面上看,其他粒子非常简单,例如磁铁中的单个带电粒子。 找到这些问题的答案需要新的数学见解。 该项目的一个重要特点是利用物理洞察力和数学技术的相互作用。 该项目将数学物理的几个方面交织在一起:通过经典和量子力学主方程的非平衡统计力学,涉及磁场和更一般的矢量场的变分问题以及与经典辐射场相互作用的带电系统。 调查变分不等式作为一个共同的主题。 一个奋进是把最近关于平衡方法的有力进展带到其他问题上,无论是在经典还是量子力学领域。 同样,用于现实模型的Kac类型主方程的差距现在是可以达到的。 Kac主方程是用有限水库近似恒温器的理想方程。 PI将研究两个恒温器在不同温度下的非平衡稳态(NESS)特性。 下一步是研究这种系统的近似有限水库,特别是确定各种时间尺度上,这些近似举行。 涉及向量场的变分法是一个广阔的领域。 本计画将研究一类共形不变不等式,其中包含sharp常数的计算。 我们的目标是利用这些见解来阐明波函数复杂的磁场系统。 一个不同但密切相关的问题是分析超临界电荷的麦克斯韦-泡利-库仑方程。 这项调查的重点将是是否有解决方案的问题。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a Conjecture by Hundertmark and Simon
关于 Hundertmark 和 Simon 的猜想
- DOI:10.1007/s00023-022-01169-x
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Laptev, Ari;Loss, Michael;Schimmer, Lukas
- 通讯作者:Schimmer, Lukas
Time Global Finite-Energy Weak Solutions to the Many-Body Maxwell–Pauli Equations
多体麦克斯韦-泡利方程的全局有限能量弱解
- DOI:10.1007/s00220-020-03772-7
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Kieffer, T. F.
- 通讯作者:Kieffer, T. F.
Non-linear Schrödinger equation in a uniform magnetic field
均匀磁场中的非线性薛定谔方程
- DOI:10.4171/ecr/18-1/14
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kieffer, Forrest Loss
- 通讯作者:Kieffer, Forrest Loss
Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities
二维磁狄拉克-库仑算子和哈代不等式的临界磁场
- DOI:10.4171/ecr/18-1/4
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dolbeault, Jean;Esteban, Maria;Loss, Michael
- 通讯作者:Loss, Michael
Polynomial χ-binding functions for t-broom-free graphs
无 t-broom 图的多项式 Ï 绑定函数
- DOI:10.1016/j.jctb.2023.04.005
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu, Xiaonan;Schroeder, Joshua;Wang, Zhiyu;Yu, Xingxing
- 通讯作者:Yu, Xingxing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Loss其他文献
Optimal heat kernel estimates for schrödinger operators with magnetic fields in two dimensions
- DOI:
10.1007/bf02885674 - 发表时间:
1997-06-01 - 期刊:
- 影响因子:2.600
- 作者:
Michael Loss;Bernd Thaller - 通讯作者:
Bernd Thaller
Relativistic Hydrogenic Atoms in Strong Magnetic Fields
- DOI:
10.1007/s00023-006-0321-5 - 发表时间:
2007-06-07 - 期刊:
- 影响因子:1.300
- 作者:
Jean Dolbeault;Maria J. Esteban;Michael Loss - 通讯作者:
Michael Loss
On an inequality of Lin, Kim and Hsieh and Strong Subadditivity
论 Lin、Kim 和 Hsieh 的不等式以及强次可加性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
E. Carlen;Michael Loss - 通讯作者:
Michael Loss
Michael Loss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Loss', 18)}}的其他基金
Variational Questions in Mathematics and Physics
数学和物理中的变分问题
- 批准号:
2154340 - 财政年份:2022
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
Variational Problems in Analysis and Physics
分析和物理中的变分问题
- 批准号:
1600560 - 财政年份:2016
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Collaborative Research: Variational Problems and Dynamics
合作研究:变分问题和动力学
- 批准号:
0901304 - 财政年份:2009
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Dynamics and Variational Problems
数学科学:非线性动力学和变分问题
- 批准号:
9500840 - 财政年份:1995
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Methods in Variational Problems
数学科学:变分问题的动力学方法
- 批准号:
9207703 - 财政年份:1992
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
U.S.-Switerland Exchange of Postdoctoral Scientists and Engineers: Mathematics Problems in Quantum Mechanics
美国-瑞士博士后科学家和工程师交流:量子力学中的数学问题
- 批准号:
8503858 - 财政年份:1985
- 资助金额:
$ 28.7万 - 项目类别:
Fellowship Award
相似海外基金
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis of variational problems in topological geometry using Sobolev manifolds
使用 Sobolev 流形分析拓扑几何中的变分问题
- 批准号:
21K18583 - 财政年份:2021
- 资助金额:
$ 28.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Existence and Regularity of Solutions to Variational Problems in Geometric Analysis
职业:几何分析中变分问题解的存在性和规律性
- 批准号:
2147439 - 财政年份:2021
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Variational problems and geometric analysis for hypersurfaces with singular points, and novel development of discrete surface theory
奇点超曲面的变分问题和几何分析以及离散曲面理论的新发展
- 批准号:
20H01801 - 财政年份:2020
- 资助金额:
$ 28.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of maximum a posteriori estimators: Common convergence theories for Bayesian and variational inverse problems
最大后验估计量分析:贝叶斯和变分逆问题的常见收敛理论
- 批准号:
415980428 - 财政年份:2019
- 资助金额:
$ 28.7万 - 项目类别:
Research Grants
CAREER: Existence and Regularity of Solutions to Variational Problems in Geometric Analysis
职业:几何分析中变分问题解的存在性和规律性
- 批准号:
1750254 - 财政年份:2018
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Variational Problems and Partial Differential Equations on Discrete Random Structures: Analysis and Applications to Data Science
离散随机结构的变分问题和偏微分方程:分析及其在数据科学中的应用
- 批准号:
1814991 - 财政年份:2018
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
- 批准号:
1764417 - 财政年份:2018
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Variational Problems in Analysis and Physics
分析和物理中的变分问题
- 批准号:
1600560 - 财政年份:2016
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Variational Problems on Random Structures: Analysis and Applications to Data Science
随机结构的变分问题:数据科学的分析和应用
- 批准号:
1516677 - 财政年份:2015
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant