ITR: Post-Silicon Validation and Diagnosis Based Upon Statistical Delay Models

ITR:基于统计延迟模型的硅后验证和诊断

基本信息

  • 批准号:
    0312701
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

As the manufacturing technologies move toward nanometer ranges, one of the major challenges is to ensure consistency between the behavior expected of a design and its actual behavior in a real silicon chip. Due to Deep Sub-Micron (DSM) effects such as process variations, small defects, and electrical noise, it has become increasingly difficult to predict the design's timing behavior on silicon, or to guarantee such timing behavior before the design goes into production. To avoid slowdowns in manufacturing, the industry needs novel post-silicon validation and diagnosis tools that will effectively resolve the inconsistency between a design model and its implementation on a silicon chip. To meet the challenge, the PIs propose novel statistical approaches that will better model, and more accurately simulate, the timing behavior of a device. The PIs propose three research components in this project to be integrated with their planned educational activities: (1) diagnosis of timing problems, (2) post-silicon validation and debugging, and (3) prediction of timing quality. In diagnosis, techniques will be developed to locate timing problems on faulty chips, determining whether these problems may be due to manufacturing defects. In validation and debugging, techniques will be developed to ensure consistency between the timing behavior of models used to design a chip and that which is observed during the manufacturing process. For the third component, prediction of timing quality, techniques will be developed to draw statistical inference about the timing quality level in the stages of mass production. The proposed research will complement other research efforts in the modeling of DSM circuits and process variations by taking the analysis to a more abstract level. Rather than dealing directly with transistors and wires, the proposed tools will operate on correlated random variables that model the timing behavior of transistors and wires. This project will facilitate the development of practical tools for large and complex designs. When the proposed statistical tools and methodologies become available, chip designers can relax the metrics of various parameters in order to obtain the best design tradeoff, thus pushing manufacturing technologies to the cutting edge. When silicon's timing problems can be more effectively detected and better understood, companies can avoid wasting resources in struggling with manufacturing uncertainties and devote these resources to more productive uses.
随着制造技术向纳米范围发展,主要挑战之一是确保设计的预期行为与其在真实的硅芯片中的实际行为之间的一致性。由于深亚微米(DSM)效应,例如工艺变化、小缺陷和电噪声,预测硅上的设计的时序行为或在设计投入生产之前保证这种时序行为变得越来越困难。为了避免制造速度放缓,该行业需要新的硅后验证和诊断工具,以有效解决设计模型及其在硅芯片上的实现之间的不一致性。为了应对这一挑战,PI提出了新的统计方法,可以更好地建模,更准确地模拟设备的时序行为。PI在该项目中提出了三个研究组成部分,与他们计划的教育活动相结合:(1)时序问题的诊断,(2)后硅验证和调试,以及(3)时序质量的预测。在诊断方面,将开发技术来定位故障芯片上的时序问题,确定这些问题是否可能是由于制造缺陷造成的。在验证和调试中,将开发技术以确保用于设计芯片的模型的时序行为与在制造过程中观察到的时序行为之间的一致性。对于第三个组成部分,定时质量的预测,技术将被开发,以得出关于大规模生产阶段的定时质量水平的统计推断。拟议的研究将补充其他研究工作的DSM电路和工艺变化的建模,采取更抽象的层次的分析。所提出的工具不是直接处理晶体管和导线,而是对相关的随机变量进行操作,这些随机变量对晶体管和导线的时序行为进行建模。该项目将促进为大型和复杂设计开发实用工具。当提出的统计工具和方法变得可用时,芯片设计者可以放松各种参数的度量,以获得最佳的设计折衷,从而将制造技术推向前沿。当硅的时序问题能够被更有效地检测和更好地理解时,公司就可以避免浪费资源来应对制造的不确定性,并将这些资源投入到更高效的用途中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li-Chung Wang其他文献

Co-morbidity of Kawasaki Disease
  • DOI:
    10.1007/s12098-011-0589-4
  • 发表时间:
    2011-11-05
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Fang-Liang Huang;Te-Kau Chang;Sheng-Ling Jan;Chi-Ren Tsai;Li-Chung Wang;Mei-Chin Lai;Po-Yen Chen
  • 通讯作者:
    Po-Yen Chen

Li-Chung Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li-Chung Wang', 18)}}的其他基金

SHF: Small: Perception-Based Analytics For Semiconductor Production and Test Data
SHF:小型:针对半导体生产和测试数据的基于感知的分析
  • 批准号:
    2006739
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF: Small: End-To-End Test Data Analytics For Automotive Chip Production Lines
SHF:小型:汽车芯片生产线的端到端测试数据分析
  • 批准号:
    1618118
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Cost-Effective Reliability Screening, Binning, and In-Field Adaptation
经济高效的可靠性筛选、分级和现场适应
  • 批准号:
    1255818
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SHF: Small: Data Learning Framework for Diagnosis Based Yield Optimization
SHF:小型:基于诊断的产量优化的数据学习框架
  • 批准号:
    0915259
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistical Tools and Methodologies for Timing Validation and Silicon Debug
用于时序验证和芯片调试的统计工具和方法
  • 批准号:
    0541192
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于可见光环化反应的Post-Iboga类吲哚生物碱不对称集群合成
  • 批准号:
    22361048
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
AGB和post-AGB星的星周尘埃与实测红外色指数
  • 批准号:
    10973004
  • 批准年份:
    2009
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
Post-WIMP用户界面模型和支撑技术研究
  • 批准号:
    60503054
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Systematic and Structural Methods for Post-Silicon Validation
用于硅后验证的系统性和结构性方法
  • 批准号:
    RGPIN-2015-05312
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
SHF: Small: Design-for-Debug Architecture for Post-Silicon Security Validation
SHF:小型:用于硅后安全验证的调试架构
  • 批准号:
    1908131
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
STTR Phase I: Tuned Miniaturized Point-Field Detectors as Contactless Current Sensor for Post-silicon Power Electronics
STTR 第一阶段:调谐小型化点场检测器作为后硅电力电子器件的非接触式电流传感器
  • 批准号:
    1843330
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Systematic and Structural Methods for Post-Silicon Validation
用于硅后验证的系统性和结构性方法
  • 批准号:
    RGPIN-2015-05312
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
FoMR: Post-Silicon Microarchitecture
FoMR:后硅微架构
  • 批准号:
    1823517
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Systematic and Structural Methods for Post-Silicon Validation
用于硅后验证的系统性和结构性方法
  • 批准号:
    478097-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
ALICE Upgrade 2 (Silicon Physicist post)
ALICE 升级 2(硅物理学家岗位)
  • 批准号:
    ST/P005438/1
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Systematic and Structural Methods for Post-Silicon Validation
用于硅后验证的系统性和结构性方法
  • 批准号:
    RGPIN-2015-05312
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Silicon-Carbide Switches for Post-Silicon Efficiency of Power Electronics
用于电力电子后硅效率的碳化硅开关
  • 批准号:
    LP150100525
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Linkage Projects
Systematic and Structural Methods for Post-Silicon Validation
用于硅后验证的系统性和结构性方法
  • 批准号:
    RGPIN-2015-05312
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了