Micro and Macroscale Measurement of Thermal Properties for Cryobiological Applications
低温生物学应用的微观和宏观热性能测量
基本信息
- 批准号:0313934
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two important biomedical applications of freezing are cryopreservation, the preservation of material in the frozen state, and cryosurgery, the use of freezing to destroy tissue. These both are part of the larger field of cryobiology or low temperature biology. In both of these applications heat transfer prediction of biomaterial thermal response (i.e. cooling rate, end-temperature, dwell time and thawing rate) is important for the effective planning of protocols where thermally mediated events within the biomaterial such as intracellular ice formation, cellular dehydration, eutectic formation, (de)vitrification, and/or lipid and protein phase changes are important to the determination of outcome (i.e. survival or death). Unfortunately the database of biomaterial thermal properties necessary to make accurate heat transfer prediction of thermal response in the cryogenic regime is quite limited. Specifically, latent heat, thermal conductivity and specific heat properties are available only for a few biomaterials and little if any data is available below -40 C or in the presence of chemical additives. The thermal diffusivity of ice, an abundant component of frozen biomaterials, changes by essentially an order of magnitude between 0 and -150 C. Preliminary results show more modest thermal property changes in tissues, but even greater thermal property changes in frozen salt solutions than ice. The addition of other chemicals (i.e. cryoprotective agents or cryoadjuvants) in order to more effectively preserve or destroy the biomaterial may further alter the thermal properties in a manner which remains to be determined. This proposal aims to make both bulk and microscale measurements of thermal properties for a variety of solutions and native/artificial tissues with and without chemical additives down to a temperature of -150 C. Bulk measurements will be carried out with a pulse-decay thermistor apparatus for thermal conductivity measurement and a Differential Scanning Calorimetry (DSC) for specific heat and latent heat measurements.In addition, directional thermal conductivity (anisotropy), which depends on microscale ice crystal structure and orientation, will be measured with a new apparatus which allows visualization of ice crystal growth during freezing on a directional stage followed by thermal conductivity measurements directly on the sample visualized. It is anticipated that the presence of microstructure at the level of the individual crystals, eutectics and glass (vitrified material) may have a strong anisotropic nature which can be measured and incorporated into predictive models. Ultimately, the properties measured will contribute significantly to the expansion of a cryogenic biomaterial thermal property database thereby allowing improved predictive modeling for a variety of cryobiological applications.
冷冻的两个重要的生物医学应用是冷冻保存,即在冷冻状态下保存材料,以及冷冻手术,即使用冷冻来破坏组织。 这两者都是低温生物学或低温生物学更大领域的一部分。 在这两种应用中,生物材料热响应的传热预测(即,冷却速率、终温、停留时间和解冻速率)对于有效规划方案是重要的,其中生物材料内的热介导事件例如细胞内冰形成、细胞脱水、共晶形成,(去)玻璃化,和/或脂质和蛋白质相的变化对于确定结果(即存活或死亡)是重要的。不幸的是,在低温状态下进行准确的热传递预测所需的生物材料热特性数据库是相当有限的。 具体而言,潜热,导热系数和比热性能仅适用于少数生物材料,并且在-40 ℃以下或存在化学添加剂的情况下几乎没有任何数据。 冰是冷冻生物材料的丰富组分,其热扩散率在0和-150 ℃之间基本上变化一个数量级。 初步结果显示,组织中的热性质变化更温和,但冷冻盐溶液中的热性质变化甚至比冰更大。 为了更有效地保存或破坏生物材料而添加其他化学品(即冷冻保护剂或冷冻佐剂)可能会进一步改变热特性,其方式仍有待确定。该提案旨在对各种溶液和天然/人造组织的热性能进行批量和微尺度测量,其中有和没有化学添加剂,温度低至-150 ℃。 将使用用于热导率测量的脉冲衰减热敏电阻装置和用于比热和潜热测量的差示扫描量热法(DSC)进行本体测量。(各向异性),其取决于微尺度冰晶结构和取向,将使用一种新的装置进行测量,该装置允许在定向阶段冷冻期间观察冰晶生长,然后直接在样品可视化。 预计在单个晶体、共晶体和玻璃(玻璃化材料)水平上存在的微结构可能具有强的各向异性性质,其可以被测量并并入预测模型中。 最终,所测量的性能将大大有助于低温生物材料热性能数据库的扩展,从而允许各种低温生物学应用的改进的预测建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Bischof其他文献
When will nanowarmed organs crack? A preliminary 1-D model
- DOI:
10.1016/j.cryobiol.2020.10.090 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:
- 作者:
Lakshya Gangwar;Joseph Kangas;Zonghu Han;Michael Etheridge;John Bischof - 通讯作者:
John Bischof
Physical limits of laser gold nanowarming
- DOI:
10.1016/j.cryobiol.2018.10.161 - 发表时间:
2018-12-01 - 期刊:
- 影响因子:
- 作者:
Kanav Khosla;Li Zhan;Aditya Bhati;Aidan Carley-Clopton;Mary Hagedorn;John Bischof - 通讯作者:
John Bischof
Water confinement effect on critical cooling and warming rates in tissue-CPA system
- DOI:
10.1016/j.cryobiol.2023.104659 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Lakshya Gangwar;Zonghu Han;Michael Etheridge;John Bischof;Jeunghwan Choi - 通讯作者:
Jeunghwan Choi
ATP-Bio, a new center using nanomedicine to preserve biological systems
- DOI:
10.1016/j.cryobiol.2022.11.003 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
John Bischof;Mehmet Toner;Allison Hubel - 通讯作者:
Allison Hubel
11. Nanowarming: A new concept in tissue and organ preservation
- DOI:
10.1016/j.cryobiol.2015.05.017 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:
- 作者:
John Bischof - 通讯作者:
John Bischof
John Bischof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Bischof', 18)}}的其他基金
RAPID: Development of an ultrasensitive thermal contrast amplification lateral flow immunoassay for rapid, point-of-care COVID-19 diagnosis
RAPID:开发超灵敏热对比放大侧流免疫测定法,用于快速即时诊断 COVID-19
- 批准号:
2029474 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Engineering Research Center for Advanced Technologies for Preservation of Biological Systems (ATP-Bio)
NSF 生物系统保护先进技术工程研究中心 (ATP-Bio)
- 批准号:
1941543 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Proposal for conference support for the ASME 2015 4th Global Congress on NanoEngineering for Medicine and Biology (Minneapolis, April 19 - 22, 2015)
ASME 2015 第四届全球医学和生物学纳米工程大会会议支持提案(明尼阿波利斯,2015 年 4 月 19 日至 22 日)
- 批准号:
1461717 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
ASME 2014 3rd Global Congress on Nanoengienering for Medicine and Biology, Feb 2-5, 2014 in San Francisco
ASME 2014 第三届全球医学和生物学纳米工程大会,2014 年 2 月 2-5 日在旧金山举行
- 批准号:
1361563 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
RF excited magnetic nanoparticles to improve thawing of vitrified biomaterials
射频激发磁性纳米粒子改善玻璃化生物材料的解冻
- 批准号:
1336659 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Thermal Properties in Biomaterials: The Need for Microscale Measurement in Thin Tissue Systems.
生物材料的热性能:薄组织系统中微尺度测量的需要。
- 批准号:
1236760 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Biotransport Symposium 2008 - Nano and multiscale frontiers in biological heat and mass transfer
2008 年生物传输研讨会 - 生物传热传质的纳米和多尺度前沿
- 批准号:
0808738 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Establishing the Efficacy of Cryomyolysis - Cryosurgery of Uterine Fibroids
职业生涯:确定冷冻肌溶解术的功效 - 子宫肌瘤冷冻手术
- 批准号:
9703326 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
RESEARCH INITIATION AWARD: Quantitative Freezing of Biological Tissue
研究启动奖:生物组织的定量冷冻
- 批准号:
9410004 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Linking microscale and macroscale changes in brain activity under the influence of psychedelics
将迷幻药影响下大脑活动的微观和宏观变化联系起来
- 批准号:
2881045 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
RII Track-4: NSF: Understanding Microstructure Evolution in Stimuli-Responsive Yield-Stress Fluid-Assisted 3D Printing: Linking Microstructures to Macroscale Rheological Properties
RII Track-4:NSF:了解刺激响应屈服应力流体辅助 3D 打印中的微观结构演化:将微观结构与宏观流变特性联系起来
- 批准号:
2229004 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical Physics of Design: Materials to Macroscale
设计的统计物理:材料到宏观尺度
- 批准号:
RGPIN-2019-05655 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Sustainable mine waste management: from microscale hydrogeochemical processes to macroscale prediction models
可持续矿山废物管理:从微观水文地球化学过程到宏观预测模型
- 批准号:
RGPIN-2021-03133 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Structure-function coupling in macroscale brain networks
宏观脑网络中的结构-功能耦合
- 批准号:
451594 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Operating Grants
Statistical Physics of Design: Materials to Macroscale
设计的统计物理:材料到宏观尺度
- 批准号:
RGPIN-2019-05655 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
MRA: Macroscale Resilience: Assessing the recovery of western U.S. forests following compound disturbance by linking observations from trees to ecoregions
MRA:宏观恢复力:通过将树木观察结果与生态区联系起来,评估美国西部森林在复合干扰后的恢复情况
- 批准号:
2017889 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Tomo-SAXS: Imaging full-field molecular-to-macroscale biophysics of fibrous tissues
Tomo-SAXS:纤维组织的全场分子到宏观生物物理学成像
- 批准号:
EP/V011065/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Tomo-SAXS: Imaging full-field molecular-to-macroscale biophysics of fibrous tissues
Tomo-SAXS:纤维组织的全场分子到宏观生物物理学成像
- 批准号:
EP/V011383/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Tomo-SAXS: Imaging full-field molecular-to-macroscale biophysics of fibrous tissues
Tomo-SAXS:纤维组织的全场分子到宏观生物物理学成像
- 批准号:
EP/V011006/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant