RF excited magnetic nanoparticles to improve thawing of vitrified biomaterials

射频激发磁性纳米粒子改善玻璃化生物材料的解冻

基本信息

  • 批准号:
    1336659
  • 负责人:
  • 金额:
    $ 34.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

CBET-1336659BischofVitrification or freezing to a ?glassy? rather than crystalline phase, is a form of biopreservation and an important enabling approach for cellular and regenerative medicine. In principle, this approach offers the powerful ability to store and transport cells, tissues and organs which can be used in biomedical labs, biological banking organizations and companies worldwide. Unfortunately, practical application of vitrification has been limited to smaller systems such as cells and thin tissues due to diffusive (heat and mass transfer) and phase change limitations. Specifically, devitrification (crystallization) and cracking during thawing preclude the use of vitrification in bulk systems such as organs and larger tissues. To circumvent this fundamental problem we propose here to use radiofrequency (RF) excited magnetic nanoparticles (mNPs) to create uniform heat generation within biomaterials thereby avoiding size or boundary condition dependence which can lead to failure during thawing. As a part of this work, we will characterize the heating and phase change behavior of mNP-laden cryoprotective solutions. This will include selection of cryoprotective agent (CPA) and mNPs (magnetic nanoparticles), physicochemical characterization of these solutions (i.e. thermal and magnetic properties, aggregation, and devitrification), and RF thawing measurement and modeling to demonstrate improvements over traditional approaches. After characterizing the mNP CPA solutions we will investigate the impact of more uniform and rapid thaw on biological outcomes. Here the solutions will be loaded into cells and tissues by diffusion or perfusion, then these loaded systems will be assessed by imaging, staining and other analytical approaches to demonstrate where the CPA and mNPs have loaded. Further, the critical cooling and warming rates necessary to vitrify during cooling and avoid devitrification or cracking upon thaw will be determined. Finally, improvements to the viability and structure of these systems by avoiding devitrification and cracking after RF excited mNP thawing will be demonstrated.This project has the potential to dramatically improve biomaterial vitrification and therefore biopreservation which impacts cell banking and therapies, tissue transplantation and other important regenerative medicine and biomedical applications worldwide. Our approach will yield faster and more uniform thawing rates that are expected to improve both viability and structural integrity upon thawing of biopreserved systems. The most dramatic opportunity of this new technology will be use for larger biomaterials where devitrification and cracking routinely result in preservation failures, and where faster thaw rates may also help reduce the amount of potentially toxic CPAs needed. More broadly, the proposed research will lead to greater understanding of the interactions of NPs within frozen and vitrified biological systems, with potential applications that go beyond biopreservation. The research undertaken will provide educational opportunities for several graduate and undergraduate students and collaboration with both academic and industrial colleagues.
CBET-1336659玻璃化或冷冻至a?glassy?而不是结晶相,是生物保存的一种形式,也是细胞和再生医学的一种重要方法。 原则上,这种方法提供了存储和运输细胞、组织和器官的强大能力,可用于生物医学实验室、生物银行组织和全球公司。 不幸的是,由于扩散(热量和质量传递)和相变限制,玻璃化的实际应用局限于较小的系统,例如细胞和薄组织。具体而言,解冻过程中的失透(结晶)和破裂排除了在散装系统(如器官和较大组织)中使用玻璃化。为了规避这一根本问题,我们在这里提出使用射频(RF)激发的磁性纳米颗粒(mNP),以创建均匀的热生成生物材料,从而避免大小或边界条件的依赖,可能会导致解冻过程中失败。 作为这项工作的一部分,我们将表征的加热和相变行为的mNP负载的冷冻保护解决方案。这将包括冷冻保护剂(CPA)和mNP(磁性纳米颗粒)的选择,这些解决方案的物理化学表征(即热和磁性,聚集和失透),以及RF解冻测量和建模,以证明优于传统方法的改进。在表征mNP CPA溶液后,我们将研究更均匀和快速解冻对生物学结果的影响。在此,溶液将通过扩散或灌注加载到细胞和组织中,然后这些加载的系统将通过成像、染色和其他分析方法进行评估,以证明CPA和mNP加载的位置。此外,将确定在冷却期间玻璃化并避免解冻时失透或开裂所需的临界冷却和升温速率。最后,改善这些系统的生存能力和结构,避免失透和开裂后,RF激发mNP解冻将demonstration.This项目有可能显着提高生物材料的玻璃化,因此生物保存影响细胞库和治疗,组织移植和其他重要的再生医学和生物医学应用世界各地。 我们的方法将产生更快,更均匀的解冻速率,预计将提高生物保护系统解冻后的生存力和结构完整性。这项新技术最引人注目的机会将用于较大的生物材料,其中失透和开裂通常会导致保存失败,并且更快的解冻速率也可能有助于减少所需的潜在有毒CPA的量。更广泛地说,拟议的研究将导致更好地了解冷冻和玻璃化生物系统中NP的相互作用,其潜在应用超出了生物保存。 所进行的研究将为几个研究生和本科生提供教育机会,并与学术界和工业界的同事合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Bischof其他文献

When will nanowarmed organs crack? A preliminary 1-D model
  • DOI:
    10.1016/j.cryobiol.2020.10.090
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lakshya Gangwar;Joseph Kangas;Zonghu Han;Michael Etheridge;John Bischof
  • 通讯作者:
    John Bischof
Physical limits of laser gold nanowarming
  • DOI:
    10.1016/j.cryobiol.2018.10.161
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kanav Khosla;Li Zhan;Aditya Bhati;Aidan Carley-Clopton;Mary Hagedorn;John Bischof
  • 通讯作者:
    John Bischof
ATP-Bio, a new center using nanomedicine to preserve biological systems
  • DOI:
    10.1016/j.cryobiol.2022.11.003
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Bischof;Mehmet Toner;Allison Hubel
  • 通讯作者:
    Allison Hubel
11. Nanowarming: A new concept in tissue and organ preservation
  • DOI:
    10.1016/j.cryobiol.2015.05.017
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Bischof
  • 通讯作者:
    John Bischof
Metal foam based rewarming of vitrified systems
  • DOI:
    10.1016/j.cryobiol.2017.12.074
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Navid Manuchehrabadi;Meng Shi;Priyatanu Roy;Jinbin Qiu;Feng Xu;Tian Jian Lu;John Bischof
  • 通讯作者:
    John Bischof

John Bischof的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Bischof', 18)}}的其他基金

RAPID: Development of an ultrasensitive thermal contrast amplification lateral flow immunoassay for rapid, point-of-care COVID-19 diagnosis
RAPID:开发超灵敏热对比放大侧流免疫测定法,用于快速即时诊断 COVID-19
  • 批准号:
    2029474
  • 财政年份:
    2020
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
NSF Engineering Research Center for Advanced Technologies for Preservation of Biological Systems (ATP-Bio)
NSF 生物系统保护先进技术工程研究中心 (ATP-Bio)
  • 批准号:
    1941543
  • 财政年份:
    2020
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Cooperative Agreement
Proposal for conference support for the ASME 2015 4th Global Congress on NanoEngineering for Medicine and Biology (Minneapolis, April 19 - 22, 2015)
ASME 2015 第四届全球医学和生物学纳米工程大会会议支持提案(明尼阿波利斯,2015 年 4 月 19 日至 22 日)
  • 批准号:
    1461717
  • 财政年份:
    2015
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
ASME 2014 3rd Global Congress on Nanoengienering for Medicine and Biology, Feb 2-5, 2014 in San Francisco
ASME 2014 第三届全球医学和生物学纳米工程大会,2014 年 2 月 2-5 日在旧金山举行
  • 批准号:
    1361563
  • 财政年份:
    2014
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Thermal Properties in Biomaterials: The Need for Microscale Measurement in Thin Tissue Systems.
生物材料的热性能:薄组织系统中微尺度测量的需要。
  • 批准号:
    1236760
  • 财政年份:
    2012
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Biotransport Symposium 2008 - Nano and multiscale frontiers in biological heat and mass transfer
2008 年生物传输研讨会 - 生物传热传质的纳米和多尺度前沿
  • 批准号:
    0808738
  • 财政年份:
    2008
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Micro and Macroscale Measurement of Thermal Properties for Cryobiological Applications
低温生物学应用的微观和宏观热性能测量
  • 批准号:
    0313934
  • 财政年份:
    2003
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
CAREER: Establishing the Efficacy of Cryomyolysis - Cryosurgery of Uterine Fibroids
职业生涯:确定冷冻肌溶解术的功效 - 子宫肌瘤冷冻手术
  • 批准号:
    9703326
  • 财政年份:
    1997
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Continuing Grant
RESEARCH INITIATION AWARD: Quantitative Freezing of Biological Tissue
研究启动奖:生物组织的定量冷冻
  • 批准号:
    9410004
  • 财政年份:
    1994
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant

相似国自然基金

分子高振动-转动激发态结构中的复杂相互作用
  • 批准号:
    11074204
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Continuing Grant
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
  • 批准号:
    10589159
  • 财政年份:
    2021
  • 资助金额:
    $ 34.94万
  • 项目类别:
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
  • 批准号:
    10415184
  • 财政年份:
    2021
  • 资助金额:
    $ 34.94万
  • 项目类别:
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
  • 批准号:
    10273133
  • 财政年份:
    2021
  • 资助金额:
    $ 34.94万
  • 项目类别:
Theoretical study of laser-excited magnetization reversal dynamics for developing ultra-high-density magnetic recording media
用于开发超高密度磁记录介质的激光激发磁化反转动力学的理论研究
  • 批准号:
    20K05313
  • 财政年份:
    2020
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetic microscopy via acoustic excitation and acoustically excited spin dynamics
通过声激发和声激发自旋动力学的磁显微镜
  • 批准号:
    17H02808
  • 财政年份:
    2017
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of shell-evolution mechanism in neutron-rich nuclei by precise nuclear magnetic moment measurement of short-lived excited states
通过短寿命激发态的精确核磁矩测量来阐明富中子核中的壳层演化机制
  • 批准号:
    17H02893
  • 财政年份:
    2017
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Micro defect identification by weak magnetic signal excited by magnetic field controlled in time and space
时间和空间受控磁场激发微弱磁信号识别微观缺陷
  • 批准号:
    17K06467
  • 财政年份:
    2017
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of neutron-eich nuclear structure through the magnetic-moment measurement of excited states of Cu isotopes
通过铜同位素激发态磁矩测量研究中子核结构
  • 批准号:
    16K05390
  • 财政年份:
    2016
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the boundary condition of spontaneously excited Alfven wave and relaxation of anisotropy in a mirror magnetic field configuration
镜面磁场结构中自激阿尔文波边界条件及各向异性弛豫的研究
  • 批准号:
    15K17797
  • 财政年份:
    2015
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了