RAPID: Development of an ultrasensitive thermal contrast amplification lateral flow immunoassay for rapid, point-of-care COVID-19 diagnosis

RAPID:开发超灵敏热对比放大侧流免疫测定法,用于快速即时诊断 COVID-19

基本信息

  • 批准号:
    2029474
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Innovative and unique thermal contrast technology will be used to detect heat from laser irradiated gold nanoparticles to vastly improve the sensitivity of rapid diagnostics tests (i.e. lateral flow assays) designed to detect and diagnose COVID-19. This technology, which has been used to significantly improve lateral flow assays for HIV, malaria, Strep and influenza, will enable widespread, inexpensive ( $1/test), rapid (≤ 10 minutes), point-of-care detection of COVID-19. Such detection does not exist and cannot exist using the current methodologies for detecting both early (i.e. viral protein) and late (i.e. antibody) stages of COVID-19 infection. These new, thermal contrast lateral flow assays, along with new thermal contrast “reading” technology, will accelerate effective and targeted testing and surveillance of disease spread and management and bring enormous benefits to both national and global society. While first deployment will be in clinical settings, it is envisioned that this technology can eventually be used at schools, airports, sporting and entertainment events and even at home to assess the infection and spread of COVID-19 and other infectious diseases.The proposed research will develop new lateral flow assays to be used with innovative thermal contrast technology for highly sensitive, inexpensive, point-of-care detection of COVID-19. This new paradigm will, in the long term, be applied to a wide variety of diseases. Lateral flow assays are arguably the cheapest, fastest and easiest to use rapid diagnostic assays in the world. While they are used qualitatively for numerous diseases, they have weaknesses that include lack of sensitivity and quantification of disease burden. Both of these issues are addressed through our novel Thermal Contrast Assay technology. To address this specifically for COVID-19, two approaches are proposed: 1) optimizing gold nanoparticles and lateral flow assays for binding either COVID-19 protein or COVID-19 antibody analytes, and 2) the use of a new quantitative figure of merit called the “Binding Ratio” to rapidly identify reagents and components for optimized thermal contrast lateral flow assays. This project is part of a larger effort with industry partners to scale up the manufacturing of a proprietary thermal contrast reader so that it will be affordable for point-of-care clinical settings such as doctors’ offices, urgent care settings, emergency rooms, and field hospitals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
创新和独特的热对比技术将被用于检测激光照射的纳米金颗粒产生的热量,以极大地提高用于检测和诊断新冠肺炎的快速诊断测试(即横向流动分析)的灵敏度。这项技术已被用于显著改进艾滋病毒、疟疾、链球菌和流感的横向流动检测,将使新冠肺炎能够进行广泛、廉价(每项检测1美元)、快速(≤10分钟)、医疗保健点检测。这种检测不存在,也不能使用目前的方法同时检测新冠肺炎感染的早期(即病毒蛋白)和晚期(即抗体)。这些新的热对比侧向血流分析,以及新的热对比“读数”技术,将加快对疾病传播和管理的有效和有针对性的检测和监测,并为国家和全球社会带来巨大利益。虽然这项技术将首先在临床环境中部署,但预计这项技术最终可以在学校、机场、体育和娱乐赛事,甚至在家里用于评估新冠肺炎和其他传染病的感染和传播。拟议中的研究将开发新的侧向流动分析方法,与创新的热对比技术一起用于高灵敏度、低成本、医疗点检测新冠肺炎。从长远来看,这一新模式将应用于多种疾病。侧向流动分析可以说是世界上最便宜、最快、最容易使用的快速诊断分析方法。虽然它们被定性地用于多种疾病,但它们有弱点,包括缺乏敏感度和疾病负担的量化。这两个问题都通过我们的新型热对比分析技术得到了解决。为了专门针对新冠肺炎解决这一问题,提出了两种方法:1)优化金纳米颗粒和侧向流动分析,以结合新冠肺炎蛋白或新冠肺炎抗体分析物;2)使用称为“结合比率”的新量化优值系数,为优化的热对比侧向流动分析快速识别试剂和成分。该项目是与行业合作伙伴的更大努力的一部分,目的是扩大专有热对比读取器的制造规模,使其能够负担得起医生办公室、紧急护理机构、急诊室和野战医院等临床点环境。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis
  • DOI:
    10.1021/acsnano.0c10035
  • 发表时间:
    2021-02-19
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Liu, Yilin;Zhan, Li;Bischof, John C.
  • 通讯作者:
    Bischof, John C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Bischof其他文献

When will nanowarmed organs crack? A preliminary 1-D model
  • DOI:
    10.1016/j.cryobiol.2020.10.090
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lakshya Gangwar;Joseph Kangas;Zonghu Han;Michael Etheridge;John Bischof
  • 通讯作者:
    John Bischof
Physical limits of laser gold nanowarming
  • DOI:
    10.1016/j.cryobiol.2018.10.161
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kanav Khosla;Li Zhan;Aditya Bhati;Aidan Carley-Clopton;Mary Hagedorn;John Bischof
  • 通讯作者:
    John Bischof
Water confinement effect on critical cooling and warming rates in tissue-CPA system
  • DOI:
    10.1016/j.cryobiol.2023.104659
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lakshya Gangwar;Zonghu Han;Michael Etheridge;John Bischof;Jeunghwan Choi
  • 通讯作者:
    Jeunghwan Choi
ATP-Bio, a new center using nanomedicine to preserve biological systems
  • DOI:
    10.1016/j.cryobiol.2022.11.003
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Bischof;Mehmet Toner;Allison Hubel
  • 通讯作者:
    Allison Hubel
11. Nanowarming: A new concept in tissue and organ preservation
  • DOI:
    10.1016/j.cryobiol.2015.05.017
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Bischof
  • 通讯作者:
    John Bischof

John Bischof的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Bischof', 18)}}的其他基金

NSF Engineering Research Center for Advanced Technologies for Preservation of Biological Systems (ATP-Bio)
NSF 生物系统保护先进技术工程研究中心 (ATP-Bio)
  • 批准号:
    1941543
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Cooperative Agreement
Proposal for conference support for the ASME 2015 4th Global Congress on NanoEngineering for Medicine and Biology (Minneapolis, April 19 - 22, 2015)
ASME 2015 第四届全球医学和生物学纳米工程大会会议支持提案(明尼阿波利斯,2015 年 4 月 19 日至 22 日)
  • 批准号:
    1461717
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ASME 2014 3rd Global Congress on Nanoengienering for Medicine and Biology, Feb 2-5, 2014 in San Francisco
ASME 2014 第三届全球医学和生物学纳米工程大会,2014 年 2 月 2-5 日在旧金山举行
  • 批准号:
    1361563
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RF excited magnetic nanoparticles to improve thawing of vitrified biomaterials
射频激发磁性纳米粒子改善玻璃化生物材料的解冻
  • 批准号:
    1336659
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Thermal Properties in Biomaterials: The Need for Microscale Measurement in Thin Tissue Systems.
生物材料的热性能:薄组织系统中微尺度测量的需要。
  • 批准号:
    1236760
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Biotransport Symposium 2008 - Nano and multiscale frontiers in biological heat and mass transfer
2008 年生物传输研讨会 - 生物传热传质的纳米和多尺度前沿
  • 批准号:
    0808738
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Micro and Macroscale Measurement of Thermal Properties for Cryobiological Applications
低温生物学应用的微观和宏观热性能测量
  • 批准号:
    0313934
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Establishing the Efficacy of Cryomyolysis - Cryosurgery of Uterine Fibroids
职业生涯:确定冷冻肌溶解术的功效 - 子宫肌瘤冷冻手术
  • 批准号:
    9703326
  • 财政年份:
    1997
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
RESEARCH INITIATION AWARD: Quantitative Freezing of Biological Tissue
研究启动奖:生物组织的定量冷冻
  • 批准号:
    9410004
  • 财政年份:
    1994
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of ultrasensitive methods for acquiring differential spectra using quantum light
开发利用量子光获取微分光谱的超灵敏方法
  • 批准号:
    23K04684
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an Ultrasensitive Affinity Based Photoelectrochemical Biosensor
超灵敏亲和光电化学生物传感器的开发
  • 批准号:
    547495-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of Next Generation Plasmonic Nanosensors for Ultrasensitive, High-Throughput Nucleic Acid and Protein Assays
开发用于超灵敏、高通量核酸和蛋白质测定的下一代等离子体纳米传感器
  • 批准号:
    2204681
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development of ultrasensitive electrochemical immunosensor for rapid point-of-care Covid-19 detection
开发用于快速护理点 Covid-19 检测的超灵敏电化学免疫传感器
  • 批准号:
    580249-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Alliance Grants
Development of ultrasensitive detection method for call membrane antigen and its application to cancer companion diagnosis
Call膜抗原超灵敏检测方法的研制及其在癌症伴随诊断中的应用
  • 批准号:
    21H04686
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of an Ultrasensitive Affinity Based Photoelectrochemical Biosensor
超灵敏亲和光电化学生物传感器的开发
  • 批准号:
    547495-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
MRI: Development of an ultrafast, ultrasensitive, and high resolution direct electron detector for next-generation electron back-scattered diffraction of metallic and beam-sensitiv
MRI:开发超快、超灵敏、高分辨率直接电子探测器,用于金属和光束敏感的下一代电子背散射衍射
  • 批准号:
    2117843
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development of multichannel Ultrasensitive oscillator biosensor using graphite nano-thin film oscillators
利用石墨纳米薄膜振荡器开发多通道超灵敏振荡器生物传感器
  • 批准号:
    20K21144
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
RAPID Excellence in Research: The development of ultrasensitive, multiplexed DNA/RNA detection platform using printed nanocomposite biosensors
RAPID 卓越研究:使用印刷纳米复合生物传感器开发超灵敏、多重 DNA/RNA 检测平台
  • 批准号:
    2039369
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development of an ultrasensitive and specific dengue fever diagnostic system
开发超灵敏、特异的登革热诊断系统
  • 批准号:
    20H04556
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了