Ultrasensitive and Ultrafast Photonic Waveform Measurement Using Quasi-Phase-Matched Waveguide Nonlinear Optics

使用准相位匹配波导非线性光学进行超灵敏和超快光子波形测量

基本信息

  • 批准号:
    0401515
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

0401515WeinerThe field of ultrafast optics has advanced in a truly revolutionary manner over the last ten to fifteen years. Several groups are now generating pulses only a few femtoseconds in duration in the visible and near-infrared, equal to just a few optical cycles; and sophisticated all-optical methods for waveform measurement and processing applicable to this extremely short time scale have been developed. Largely in parallel, the field of lightwave communications has also advanced in a revolutionary manner. However, pushing the speed of electronics significantly beyond the 40 Gb/s level is expected to be very challenging. This gives rise to the so-called "electronics bottleneck," since the inherent speed of optical signaling can be much faster than the available electronics. For this reason all-optical approaches are becoming increasingly important in lightwave communications. The goal of this proposal is to adapt sophisticated all-optical methods from the field of ultrafast optics for use in lightwave systems, with a strong emphasis on nonlinear optical measurement technologies. A fundamental research challenge necessary to attain this goal involves the pursuit of orders of magnitude improvement in nonlinear optical sensitivity, which is necessary for compatibility with the low power levels and very high repetition rates typical of practical lightwave systems. In order to substantially advance the state-of-the-art in ultrafast nonlinear optical measurement technology, the PI has formed a synergistic team comprising the Weiner group at Purdue University and the Fejer group at Stanford University. The Weiner group is a world leader in powerful signal processing approaches based on relationships between the time, frequency, and spatial degrees of freedom in ultrafast lightwave signals. The Fejer group is a world leader in second-order nonlinear optical materials and devices, including nonlinear optical waveguides that provide orders of magnitude increases in efficiency and engineerable quasi-phase-matched structures that open up rich new possibilities for photonic signal processing and measurement. As a result their team proposes to realize orders of magnitude improvement in the sensitivity of ultrafast optical measurement techniques, while for the first time engineering the nonlinear structure to permit optimization of the trade-offs between efficiency, bandwidth, and temporal resolution. Broader impactThe PI's work, aimed at providing new measurement technologies enabling further advances in ultrafast lightwave communications, has the potential for significant societal benefit, by acting to support the information technology revolution that fuels so much of our economy. To catalyze rapid transfer of our results to industry, the PI envisions collaborations with partners such as Agilent Laboratories, a leading developer of test and measurement instrumentation. The research also has the potential for broader impact beyond optical communications, e.g., by establishing approaches providing orders of magnitude sensitivity enhancements for measurement of the highly structured femtosecond optical signals that are now in broad use within ultrafast optical science research. This research project should furnish excellent opportunities for broad student training in areas of cutting-edge technology, while providing teaming opportunities that will enrich the students' educational experience.
0401515 Weiner超快光学领域在过去的10到15年里以一种真正革命性的方式取得了进展。 现在有几个研究小组正在产生持续时间只有几飞秒的可见光和近红外脉冲,相当于几个光学周期;并且已经开发出适用于这种极短时间尺度的波形测量和处理的复杂全光学方法。 与此同时,光波通信领域也取得了革命性的进展。 然而,将电子设备的速度大大提高到40 Gb/s的水平预计将非常具有挑战性。 这导致了所谓的“电子瓶颈”,因为光信号的固有速度可能比可用的电子设备快得多。 由于这个原因,全光学方法在光波通信中变得越来越重要。 该提案的目标是将超快光学领域的复杂全光学方法应用于光波系统,重点是非线性光学测量技术。 实现这一目标所必需的基础研究挑战涉及追求非线性光学灵敏度的数量级改进,这对于与实际光波系统的典型的低功率水平和非常高的重复率的兼容性是必要的。 为了实质性地推进超快非线性光学测量技术的最新发展,PI组建了一个协同团队,包括普渡大学的Weiner小组和斯坦福大学的费耶尔小组。 Weiner集团是基于超快光波信号中时间、频率和空间自由度之间关系的强大信号处理方法的全球领导者。 费耶尔集团是二阶非线性光学材料和器件领域的全球领导者,包括非线性光波导,可提供数量级的效率提高和可工程化的准相位匹配结构,为光子信号处理和测量开辟了丰富的新可能性。 因此,他们的团队建议实现超快光学测量技术灵敏度的数量级改进,同时首次设计非线性结构,以优化效率,带宽和时间分辨率之间的权衡。 更广泛的影响PI的工作,旨在提供新的测量技术,使超快光波通信的进一步发展,具有显着的社会效益的潜力,通过采取行动,以支持信息技术革命,燃料这么多我们的经济。 为了促进我们的成果快速转移到行业,PI设想与合作伙伴,如安捷伦实验室,测试和测量仪器的领先开发商合作。 该研究还具有超越光通信的更广泛影响的潜力,例如,通过建立为高度结构化的飞秒光信号的测量提供数量级灵敏度增强的方法,该高度结构化的飞秒光信号现在在超快光学科学研究中广泛使用。 这个研究项目应该提供广泛的学生培训在尖端技术领域的绝佳机会,同时提供团队合作的机会,将丰富学生的教育经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Weiner其他文献

Andrew Weiner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Weiner', 18)}}的其他基金

High-dimensional Frequency Gates in Integrated Photonics for Scalable Quantum Interconnects
用于可扩展量子互连的集成光子学中的高维频率门
  • 批准号:
    2034019
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
RAISE:TAQS: High Dimensional Frequency Bin Entanglement -- Photonic Integration and Algorithms
RAISE:TAQS:高维频率仓纠缠——光子集成和算法
  • 批准号:
    1839191
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Guiding the Evolution of Microresonator Frequency Combs
指导微谐振器频率梳的发展
  • 批准号:
    1809784
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Microresonator Frequency Combs as Coherent Transceiver Sources for Multi-Tb/s Optical Communications
微谐振器频率梳作为多 Tb/s 光通信的相干收发器源
  • 批准号:
    1509578
  • 财政年份:
    2015
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Taming Entangled Photons: Programmable Control of Quantum States of Light
驯服纠缠光子:光量子态的可编程控制
  • 批准号:
    1407620
  • 财政年份:
    2014
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Self-Referenced Frequency Comb for Atomic-Molecular-Optical Physics and Optical Signal Processing Research
MRI:获取自参考频率梳用于原子分子光学物理和光信号处理研究
  • 批准号:
    1126314
  • 财政年份:
    2011
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
High Repetition Rate Photonic Frequency Combs and Applications
高重复率光子频率梳及其应用
  • 批准号:
    1102110
  • 财政年份:
    2011
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Innovative Silicon Photonics for Polarization Sensing and Control
用于偏振传感和控制的创新硅光子学
  • 批准号:
    0925759
  • 财政年份:
    2009
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Novel Hybrid Photonic-RF Ultrawideband Wireless Communications Technologies
新型混合光子射频超宽带无线通信技术
  • 批准号:
    0701448
  • 财政年份:
    2007
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Spectral Line-by-Line Pulse Shaping
频谱逐线脉冲整形
  • 批准号:
    0601692
  • 财政年份:
    2006
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
  • 批准号:
    81973434
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
  • 批准号:
    2338798
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
EAGER: Quantum Manufacturing: Machine learning-powered deterministic nanoassembly of ultrafast quantum photonic devices
EAGER:量子制造:机器学习驱动的超快量子光子器件的确定性纳米组装
  • 批准号:
    2240621
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Ultrafast Magneto-photonic Materials
超快磁光子材料
  • 批准号:
    1947070
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Ultrafast Photonic Signal Processing
超快光子信号处理
  • 批准号:
    1000231388-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Canada Research Chairs
Ultrafast Photonic Signal Processing
超快光子信号处理
  • 批准号:
    1000231388-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Canada Research Chairs
Ultrafast Photonic Signal Processing
超快光子信号处理
  • 批准号:
    1000231388-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Canada Research Chairs
Ultrafast Laser Studies of Photonic Materials and Structures
光子材料和结构的超快激光研究
  • 批准号:
    312421-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
The Introduction of Photonic Nanoinjection for Ultrafast All-optical Switching
引入光子纳米注入实现超快全光开关
  • 批准号:
    460194-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Ultrafast Photonic Signal Processing
超快光子信号处理
  • 批准号:
    1000231388-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Canada Research Chairs
Ultrafast Laser Studies of Photonic Materials and Structures
光子材料和结构的超快激光研究
  • 批准号:
    312421-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了