Non--Perturbative Interaction Effects in Disordered and Granular Metals

无序金属和颗粒金属中的非微扰相互作用效应

基本信息

  • 批准号:
    0405212
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

This award supports theoretical research and education in the area of strongly correlated electron materials. Electron-electron interactions have a dramatic effect on transport and thermodynamic properties of disordered systems. The effect is especially pronounced in systems with reduced dimensionality. While perturbative effects (taking place at relatively weak disorder and high temperature) are rather well understood, strongly disordered or low-temperature systems continue to be intellectually challenging for both experimentalists and theoreticians. The PI aims to address the twin problem of strong disorder and strong correlation with non-perturbative methods of quantum field theory. Instanton approaches have been fruitful for the study of the Coulomb blockade in quantum dots. In the first phase of the work, the PI will extend his Keldysh nonlinear sigma model approach to study granular arrays consisting of a large number of strongly connected dots (grains). The developed techniques will then be applied to generic disordered systems. The goal of the research is to describe reliably low-temperature properties of strongly disordered metals, including an apparent glassy behavior recently observed in experiments.Broader impacts of the award are primarily educational. Undergraduate students (including those participating in the NSF sponsored REU and summer-student programs) will be involved in the research activities. The project will also involve at least one full-time graduate student, who is expected to actively participate in directing undergraduate research. The upper level solid-state courses will directly benefit from the results of the research activity. This award will also facilitate interactions with the industry (seminars and possibly mini-courses are planned to be given for industrial researchers) as well as international collaboration with scientists from Germany, Israel, Japan and Russia. Results of the work will be disseminated broadly in scientific publications, national and international conferences and their proceedings. An additional venue of dissemination will be through graduate summer-schools, such as Les-Houches.%%%This award supports theoretical research and education to tackle the challenging problem of disordered materials with strongly correlated electrons. Correlations in the motion of electrons arise from strong interactions between electrons. While understanding strongly correlated materials with a regular arrangement of atoms is a challenging problem in and of itself, the combination of strong correlation and a disordered configuration of atoms is a very difficult problem. The PI will use advanced methods of theoretical condensed matter physics to attack this problem starting from a consideration of granular systems. Experiments have revealed interesting and poorly understood phenomena in disordered and strongly correlated systems. The understanding of these may provide the key to understanding apparent experimental observations of a metallic state thought not to occur in disordered two-dimensional systems and an apparent glassy behavior recently observed in a number of experiments. Broader impacts of the award are primarily educational. Undergraduate students (including those participating in the NSF sponsored REU and summer-student programs) will be involved in the research activities. The project will also involve at least one full-time graduate student, who is expected to actively participate in directing undergraduate research. The upper level solid-state courses will directly benefit from the results of the research activity. This award will also facilitate interactions with the industry (seminars and possibly mini-courses are planned to be given for industrial researchers) as well as international collaboration with scientists from Germany, Israel, Japan and Russia. Results of the work will be disseminated broadly in scientific publications, national and international conferences and their proceedings. An additional venue of dissemination will be through graduate summer-schools, such as Les-Houches.***
该奖项支持强相关电子材料领域的理论研究和教育。电子-电子相互作用对无序系统的输运和热力学性质有显著影响。这种效应在维数降低的系统中尤为明显。虽然微扰效应(发生在相对较弱的无序和高温下)被很好地理解,但对实验家和理论家来说,强无序或低温系统仍然是智力上的挑战。PI旨在用量子场论的非微扰方法解决强无序和强相关的双重问题。在量子点的库仑封锁研究中,瞬子方法取得了丰硕的成果。在工作的第一阶段,PI将扩展他的Keldysh非线性sigma模型方法来研究由大量强连接点(颗粒)组成的颗粒阵列。然后将开发的技术应用于一般的无序系统。这项研究的目标是可靠地描述强无序金属的低温特性,包括最近在实验中观察到的明显的玻璃态行为。该奖项的更广泛影响主要是教育。本科生(包括参加NSF资助的REU和暑期学生项目的学生)将参与研究活动。该项目还将涉及至少一名全日制研究生,预计他将积极参与指导本科生的研究。高水平固态课程将直接受益于研究活动的结果。该奖项还将促进与工业界的互动(计划为工业研究人员举办研讨会和可能的小型课程)以及与德国、以色列、日本和俄罗斯科学家的国际合作。这项工作的结果将在科学出版物、国家和国际会议及其论文集中广泛传播。另外一个传播途径是通过研究生暑期学校,例如Les-Houches。该奖项支持理论研究和教育,以解决具有强相关电子的无序材料的挑战性问题。电子运动中的相关性是由电子之间的强相互作用引起的。虽然理解具有规则原子排列的强相关材料本身是一个具有挑战性的问题,但强相关和无序原子结构的结合是一个非常困难的问题。PI将使用理论凝聚态物理的先进方法来从考虑颗粒系统开始解决这个问题。实验揭示了在无序和强相关系统中有趣的和鲜为人知的现象。对这些的理解可能为理解被认为不会发生在无序二维系统中的金属态的明显实验观察和最近在许多实验中观察到的明显玻璃态行为提供关键。该奖项的更广泛影响主要是教育。本科生(包括参加NSF资助的REU和暑期学生项目的学生)将参与研究活动。该项目还将涉及至少一名全日制研究生,预计他将积极参与指导本科生的研究。高水平固态课程将直接受益于研究活动的结果。该奖项还将促进与工业界的互动(计划为工业研究人员举办研讨会和可能的小型课程)以及与德国、以色列、日本和俄罗斯科学家的国际合作。这项工作的结果将在科学出版物、国家和国际会议及其论文集中广泛传播。另外一个传播途径是通过研究生暑期学校,如Les-Houches

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Kamenev其他文献

Coulomb blockade with neutral modes.
具有中性模式的库仑封锁
  • DOI:
    10.1103/physrevlett.114.156401
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Alex Kamenev;Yuval Gefen
  • 通讯作者:
    Yuval Gefen
Cyclic quantum annealing: searching for deep low-energy states in 5000-qubit spin glass
  • DOI:
    10.1038/s41598-024-80761-z
  • 发表时间:
    2024-12-28
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Hao Zhang;Kelly Boothby;Alex Kamenev
  • 通讯作者:
    Alex Kamenev
How pure can we go with adiabatic state manipulation?
我们的绝热状态操纵能达到多纯粹?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raul A. Santos;Alex Kamenev;Y. Gefen
  • 通讯作者:
    Y. Gefen
Qubit decoherence and symmetry restoration through real-time instantons
通过实时瞬子实现量子位退相干和对称性恢复
  • DOI:
    10.1103/physrevresearch.4.023020
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Foster Thompson;Alex Kamenev
  • 通讯作者:
    Alex Kamenev

Alex Kamenev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Kamenev', 18)}}的其他基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU Site: Physics and Astronomy at the University of Minnesota
REU 站点:明尼苏达大学物理与天文学
  • 批准号:
    2348668
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Physics and Astronomy at the University of Minnesota
REU 站点:明尼苏达大学物理与天文学
  • 批准号:
    2049645
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER-QAC-QCH: NSF-BSF: Quantum Computation as a Non-Equilibrium Dynamical Many-Body System
EAGER-QAC-QCH:NSF-BSF:量子计算作为非平衡动态多体系统
  • 批准号:
    2037654
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota
REU/RET 站点:明尼苏达大学物理与天文学
  • 批准号:
    1757388
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Kinetics and Entanglement in Quantum Devices
量子器件中的动力学和纠缠
  • 批准号:
    1608238
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota: Renewal
REU/RET 网站:明尼苏达大学物理和天文学:续订
  • 批准号:
    1460141
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
KINETICS OF FLUCTUATIONS IN NANO-DEVICES
纳米器件波动动力学
  • 批准号:
    1306734
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota
REU/RET 站点:明尼苏达大学物理与天文学
  • 批准号:
    1156388
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonequilibrium Superconductivity in Disordered, Granular and Hybrid Systems
无序、粒状和混合系统中的非平衡超导性
  • 批准号:
    0804266
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
  • 批准号:
    2401388
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-perturbative constraints on strongly interacting systems
强相互作用系统的非微扰约束
  • 批准号:
    2889469
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Taming Non-Perturbative Dynamics in High Energy Physics
驾驭高能物理中的非微扰动力学
  • 批准号:
    2310243
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
  • 批准号:
    2310283
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-perturbative dynamics of chiral gauge theories
手性规范理论的非微扰动力学
  • 批准号:
    23K03382
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
  • 批准号:
    22KJ2096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Non-Perturbative Interfacial Waves
非微扰界面波
  • 批准号:
    2306243
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Resurgence and non-perturbative phenomena in strongly coupled field theories
强耦合场论中的复兴和非微扰现象
  • 批准号:
    2890362
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了