Center for Nonlinear Analysis: Research and Training in Applied Mathematics

非线性分析中心:应用数学研究和培训

基本信息

  • 批准号:
    0405343
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-0405343PI: Irene FonsecaInstitution: Carnegie-Mellon UniversityTitle: Center for Nonlinear Analysis: Research and Training in Applied MathematicsABSTRACTThe Center for Nonlinear Analysis (CNA), founded in 1991 in the Department of Mathematical Sciences at Carnegie Mellon University, is a center for research and advanced training in applied mathematics. The Center target areas are nonlinear analysis, mechanics, scientific computation, and stochastic analysis. Central issues in the CNA program are: modeling, analysis and computation to study the behavior of novel man-made materials, such as shape memory alloys, ferroelectric, electromagnetic and magnetostrictive (nano)materials, interfaces in heterogeneous materials, including polycrystals and foams, thin films, and more recently modeling and simulation areas of systemic and cellular biology. Multiscale issues are prominent in the challenges of these areas. Many of today's problems in advanced materials, for example, are related to the large range of length and time scales inherent in their fabrication and function. The multiscale aspect further implies that the applications range in dimension from bulk material through thin films and nanostructured materials. Bridging this multitude of scales requires examination of interconnected analytical and computational approaches, and this is where the CNA strength is realized. Contributions of CNA members to the understanding of these issues are broadly recognized, and several methods standard in these fields nowadays were initiated by CNA researchers. CNA accomplishments in these arenas have led to participation in and the creation of projects with high institutional and cross-institutional impact, and including the CMU MRSEC (Materials Research Science and Engineering Center), an ITR, an NIH(pre-NPEBC) grant, a European network (RTN), and the Center for Computational Finance. This involvement is strongly exploited in the CNA itself by enhancing and broadening training opportunities for post-docs.The Center for Nonlinear Analysis (CNA), founded in 1991 in the Department of Mathematical Sciences at Carnegie Mellon University, is a center for research and advanced training in applied mathematics. Central areas of activity concern: the behavior of novel man-made materials, often referred to as 'smart materials,' the role of interfaces in the behavior of polycrystals and in foams, and a developing focus in cellular and systemic biology. The Center seeks to identify and develop cutting-edge applications of mathematical sciences, to promote collaborations between applied mathematicians and allied scientists, and to respond to mathematical challenges in science and engineering. Its special focus is materials and manufacturing, nanotechnology, and biotechnology. There are also environmental concerns. The Center will maintain its scientific leadership in these areas and its position as a worldwide asset in the training of young scientists at the interface between mathematics and science and engineering. The CNA is more than the sum of its parts. Combined expertise in nonlinear analysis and computation, the wealth of interdisciplinary activity and collaboration worldwide, and especially across Carnegie Mellon research units, renders this one of the strongest groups in applied mathematics in the US and on the globe. The CNA serves as a vehicle to exploit these scientific resources with its training of postdoctoral fellows, its visitors program, summer schools and conferences. Funding is dedicated exclusively to the promotion of these training missions.
提案:DMS-0405343 PI:Irene Fonseca机构:卡内基-梅隆大学名称:非线性分析中心:应用数学研究与培训摘要非线性分析中心(CNA)成立于1991年,位于卡内基梅隆大学数学科学系,是应用数学研究和高级培训中心。 该中心的目标领域是非线性分析,力学,科学计算和随机分析。 在CNA程序的中心问题是:建模,分析和计算,以研究新的人造材料的行为,如形状记忆合金,铁电,电磁和磁致伸缩(纳米)材料,在异质材料的界面,包括多晶和泡沫,薄膜,以及最近的建模和模拟系统和细胞生物学领域。 在这些领域的挑战中,多尺度问题十分突出。 例如,当今先进材料的许多问题都与其制造和功能中固有的大范围长度和时间尺度有关。多尺度方面进一步意味着应用范围从块状材料到薄膜和纳米结构材料。桥接这众多的尺度需要检查相互关联的分析和计算方法,这就是CNA的优势。 CNA成员对理解这些问题的贡献得到了广泛的认可,现在这些领域的一些方法标准是由CNA研究人员发起的。CNA在这些领域的成就导致参与和创建具有高度机构和跨机构影响的项目,包括CMU MRSEC(材料研究科学与工程中心),ITR,NIH(前NPEBC)赠款,欧洲网络(RTN)和计算金融中心。非线性分析中心(Center for Nonlinear Analysis,简称CNA)成立于1991年,是卡内基梅隆大学数学科学系的一个应用数学研究和高级培训中心。 活动关注的中心领域:新型人造材料的行为,通常被称为“智能材料”,界面在多晶体和泡沫行为中的作用,以及细胞和系统生物学的发展重点。 该中心旨在确定和发展数学科学的前沿应用,促进应用数学家和相关科学家之间的合作,并应对科学和工程中的数学挑战。 它的特别重点是材料和制造,纳米技术和生物技术。还有环境问题。该中心将保持其在这些领域的科学领导地位,并在数学与科学和工程之间的界面上培训青年科学家方面保持其作为世界资产的地位。 CNA不仅仅是其各部分的总和。 结合非线性分析和计算的专业知识,跨学科活动和全球合作的财富,特别是在卡内基梅隆大学的研究单位,使其成为美国和地球仪应用数学最强大的团体之一。 CNA作为一种工具,利用这些科学资源与博士后研究员的培训,其访问者计划,暑期学校和会议。 资金专门用于促进这些培训任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irene Fonseca其他文献

On a Volume‐Constrained Variational Problem
Material voids in elastic solids with anisotropic surface energies
  • DOI:
    10.1016/j.matpur.2011.07.003
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irene Fonseca;Nicola Fusco;Giovanni Leoni;Vincent Millot
  • 通讯作者:
    Vincent Millot
Higher order Ambrosio–Tortorelli scheme with non-negative spatially dependent parameters
具有非负空间相关参数的高阶 Ambrosio-Tortorelli 方案
  • DOI:
    10.1515/acv-2021-0071
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Irene Fonseca;Pan Liu;Xin Yang Lu
  • 通讯作者:
    Xin Yang Lu
Structured Deformations as Energy Minimizers in Models of Fracture and Hysteresis
结构变形作为断裂和磁滞模型中的能量最小化器
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rustum Choksi;G. Piero;Irene Fonseca;David Owen
  • 通讯作者:
    David Owen
Higher-Order Quasiconvexity Reduces to Quasiconvexity
  • DOI:
    10.1007/s00205-003-0278-1
  • 发表时间:
    2003-09-29
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Gianni Dal Maso;Irene Fonseca;Giovanni Leoni;Massimiliano Morini
  • 通讯作者:
    Massimiliano Morini

Irene Fonseca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irene Fonseca', 18)}}的其他基金

Variational Methods for Materials and Imaging
材料和成像的变分方法
  • 批准号:
    2205627
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematics of Microstructure in Origami, Robotics, and Electrochemistry
折纸、机器人和电化学中的微观结构数学
  • 批准号:
    2108784
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Variational Methods for Materials Science and Mathematical Imaging
材料科学和数学成像的变分方法
  • 批准号:
    1906238
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Topics in Applied Nonlinear Analysis: Recent Advances and New Trends
应用非线性分析主题:最新进展和新趋势
  • 批准号:
    1601475
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Variational Methods for Materials and Imaging Sciences
材料和成像科学的变分方法
  • 批准号:
    1411646
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
PIRE: Science at the Triple Point Between Mathematics, Mechanics and Materials Science
PIRE:数学、力学和材料科学之间的三重点科学
  • 批准号:
    0967140
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Variationals Methods in Imaging and in Materials
成像和材料中的变分方法
  • 批准号:
    0905778
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
  • 批准号:
    0635983
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
U.S.-Chile Workshop: PDEs-Preparatory Workshops; Pittsburgh, Pennsylvania; March 2006; Santiago, Chile; January 2007
美国-智利研讨会:PDE-准备研讨会;
  • 批准号:
    0536756
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Variational Problems and their Applications
变分问题及其应用
  • 批准号:
    0401763
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
  • 批准号:
    22KJ2815
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis on delta function type singularities in nonlinear heat equations
非线性热方程中δ函数型奇点分析
  • 批准号:
    23K03161
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
  • 批准号:
    23K03274
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterising Neurological Disorders with Nonlinear System Identification and Network Analysis
通过非线性系统识别和网络分析来表征神经系统疾病
  • 批准号:
    EP/X020193/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
  • 批准号:
    23KJ0293
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theoretical Establishment of Nonlinear Model Reduction Method and Its Application to Motor Analysis
非线性模型降阶方法的理论建立及其在电机分析中的应用
  • 批准号:
    23KJ1202
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
  • 批准号:
    10643212
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Analysis of blow-up phenomena for nonlinear parabolic equations
非线性抛物方程的爆炸现象分析
  • 批准号:
    23K13005
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了