Variational Methods for Materials and Imaging Sciences

材料和成像科学的变分方法

基本信息

  • 批准号:
    1411646
  • 负责人:
  • 金额:
    $ 122.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The objectives of this project are the identification and pursuit of emerging areas of applied analysis, motivated by contemporary issues in imaging and materials science at the core of advances in high-end technology and of national scientific importance. The two main topics of the project are(1) the mathematical study of modern semiconductors and nano structures, of pivotal importance in microelectric and optoelectronic technologies, such as reflective or anti-reflective coatings for optics, the fabrication of layers of insulators and semiconductors for integrated circuits, quantum well lasers, and(2) the analytical investigation of image segmentation and inpainting and recolorization for color images, fundamental to the advance of computer vision, medical imaging, film restoration, and scanning probe microscopy. Postdocs and graduate students are trained in the course of the project. Common features of the projects include the treatment of energies that involve terms of different dimensionality. These often exhibit a large range of length and time scales, higher order derivatives, and discontinuous underlying fields. Such features prevent the use of well understood functional analytic frameworks, they escape traditional mathematical theories, and they require state-of-the-art techniques, creative ideas, and the introduction of innovative mathematical tools. The investigator and her collaborators use new and recently developed methods and a deep articulation of ideas in the calculus of variations, geometric measure theory, and nonlinear partial differential equations, to address problems that include in topic (1) epitaxy and the formation of quantum dots, the onset and propagation of dislocations, homogenization of composite materials, and in topic (2) signal denoising and detexturing, dejittering, inpainting, and recolorization. These topics offer new opportunities for the integration of applied analysis in research and in the education of advanced graduate students and postdoctoral fellows, thus allowing for the training of a new generation of applied analysts at the forefront of contemporary mathematics as it interfaces with materials and imaging sciences.
该项目的目标是确定和追求应用分析的新兴领域,其动机是成像和材料科学中的当代问题,这些问题是高端技术进步的核心,具有国家科学重要性。 该项目的两个主要主题是(1)现代半导体和纳米结构的数学研究,在微电子和光电技术中具有关键重要性,例如光学反射或抗反射涂层,集成电路绝缘体和半导体层的制造,量子阱激光器,以及(2)图像分割和彩色图像修补和修复的分析研究,它是计算机视觉、医学成像、胶片修复和扫描探针显微镜发展的基础。博士后和研究生在项目过程中接受培训。 这些项目的共同特点包括涉及不同维度的能量的处理。 这些通常表现出大范围的长度和时间尺度,高阶导数,和不连续的基础领域。 这些特征阻止了人们使用熟知的函数分析框架,它们摆脱了传统的数学理论,并且它们需要最先进的技术,创造性的想法和创新的数学工具的引入。 研究者和她的合作者使用新的和最近开发的方法以及变分法,几何测量理论和非线性偏微分方程中的思想的深刻表达,以解决包括主题(1)外延和量子点的形成,位错的发生和传播,复合材料的均匀化,以及主题(2)信号去噪和去纹理,去抖动、修复和去噪。 这些主题提供了新的机会,在研究中的应用分析的整合,并在高等研究生和博士后研究员的教育,从而允许在当代数学的前沿,因为它与材料和成像科学的接口应用分析师的新一代的培训。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Motion of Curved Dislocations in Three Dimensions: Simplified Linearized Elasticity
  • DOI:
    10.1137/20m1325654
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Fonseca;Janusz Ginster;Stephan Wojtowytsch
  • 通讯作者:
    I. Fonseca;Janusz Ginster;Stephan Wojtowytsch
Homogenization of Quasi-Crystalline Functionals via Two-Scale-Cut-and-Project Convergence
  • DOI:
    10.1137/20m1341222
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rita Ferreira;I. Fonseca;R. Venkatraman
  • 通讯作者:
    Rita Ferreira;I. Fonseca;R. Venkatraman
ANISOTROPIC SURFACE TENSIONS FOR PHASE TRANSITIONS IN PERIODIC MEDIA
周期性介质中相变的各向异性表面张力
Surface evolution of elastically stressed films
弹性应力薄膜的表面演化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irene Fonseca其他文献

On a Volume‐Constrained Variational Problem
Material voids in elastic solids with anisotropic surface energies
  • DOI:
    10.1016/j.matpur.2011.07.003
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irene Fonseca;Nicola Fusco;Giovanni Leoni;Vincent Millot
  • 通讯作者:
    Vincent Millot
Higher order Ambrosio–Tortorelli scheme with non-negative spatially dependent parameters
具有非负空间相关参数的高阶 Ambrosio-Tortorelli 方案
  • DOI:
    10.1515/acv-2021-0071
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Irene Fonseca;Pan Liu;Xin Yang Lu
  • 通讯作者:
    Xin Yang Lu
Structured Deformations as Energy Minimizers in Models of Fracture and Hysteresis
结构变形作为断裂和磁滞模型中的能量最小化器
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rustum Choksi;G. Piero;Irene Fonseca;David Owen
  • 通讯作者:
    David Owen
Higher-Order Quasiconvexity Reduces to Quasiconvexity
  • DOI:
    10.1007/s00205-003-0278-1
  • 发表时间:
    2003-09-29
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Gianni Dal Maso;Irene Fonseca;Giovanni Leoni;Massimiliano Morini
  • 通讯作者:
    Massimiliano Morini

Irene Fonseca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irene Fonseca', 18)}}的其他基金

Variational Methods for Materials and Imaging
材料和成像的变分方法
  • 批准号:
    2205627
  • 财政年份:
    2022
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Standard Grant
Mathematics of Microstructure in Origami, Robotics, and Electrochemistry
折纸、机器人和电化学中的微观结构数学
  • 批准号:
    2108784
  • 财政年份:
    2021
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Standard Grant
Variational Methods for Materials Science and Mathematical Imaging
材料科学和数学成像的变分方法
  • 批准号:
    1906238
  • 财政年份:
    2019
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Continuing Grant
Topics in Applied Nonlinear Analysis: Recent Advances and New Trends
应用非线性分析主题:最新进展和新趋势
  • 批准号:
    1601475
  • 财政年份:
    2016
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Standard Grant
PIRE: Science at the Triple Point Between Mathematics, Mechanics and Materials Science
PIRE:数学、力学和材料科学之间的三重点科学
  • 批准号:
    0967140
  • 财政年份:
    2011
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Continuing Grant
Variationals Methods in Imaging and in Materials
成像和材料中的变分方法
  • 批准号:
    0905778
  • 财政年份:
    2009
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
  • 批准号:
    0635983
  • 财政年份:
    2007
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Continuing Grant
U.S.-Chile Workshop: PDEs-Preparatory Workshops; Pittsburgh, Pennsylvania; March 2006; Santiago, Chile; January 2007
美国-智利研讨会:PDE-准备研讨会;
  • 批准号:
    0536756
  • 财政年份:
    2005
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Standard Grant
Variational Problems and their Applications
变分问题及其应用
  • 批准号:
    0401763
  • 财政年份:
    2004
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
  • 批准号:
    0405343
  • 财政年份:
    2004
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Standard Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Continuing Grant
Accessible Innovative Methods for the Safety and Sustainability Assessment of Chemicals and Materials
化学品和材料安全性和可持续性评估的可用创新方法
  • 批准号:
    10097666
  • 财政年份:
    2024
  • 资助金额:
    $ 122.23万
  • 项目类别:
    EU-Funded
CHIASMA: Accessible Innovative Methods for the Safety & Sustainability Assessment of Chemicals & Materials
CHIASMA:可获取的安全创新方法
  • 批准号:
    10101594
  • 财政年份:
    2024
  • 资助金额:
    $ 122.23万
  • 项目类别:
    EU-Funded
IMPLEMENTING INNOVATIVE METHODS FOR SAFETY AND SUSTAINABILITY ASSESSMENTS OF CHEMICALS AND MATERIALS PARTICULARLY AT NANO LEVEL IN THE EUROPEAN UNION
在欧盟实施化学品和材料安全性和可持续性评估的创新方法,特别是纳米级的评估
  • 批准号:
    10109804
  • 财政年份:
    2024
  • 资助金额:
    $ 122.23万
  • 项目类别:
    EU-Funded
CHIASMA - ACCESSIBLE INNOVATIVE METHODS FOR THE SAFETY & SUSTAINABILITY ASSESSMENT OF CHEMICALS & MATERIALS
CHIASMA - 可行的安全创新方法
  • 批准号:
    10103626
  • 财政年份:
    2024
  • 资助金额:
    $ 122.23万
  • 项目类别:
    EU-Funded
Adversarial Learning Methods for Modeling and Inverse Design of Soft Materials
软材料建模和逆向设计的对抗性学习方法
  • 批准号:
    2306101
  • 财政年份:
    2023
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Standard Grant
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
  • 批准号:
    23H01028
  • 财政年份:
    2023
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Accelerated Design of New Sustainable Battery Materials with Artificial Intelligence Methods
利用人工智能方法加速设计新型可持续电池材料
  • 批准号:
    2885868
  • 财政年份:
    2023
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Studentship
Development of Science Teaching Materials and Experimental Demonstration Methods for Learning Difficulties of Persons with Sensory Sensitivity and Other Developmental Disabilities
针对感官敏感和其他发育障碍者学习困难的科学教材和实验演示方法的开发
  • 批准号:
    23K02365
  • 财政年份:
    2023
  • 资助金额:
    $ 122.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了