Variational Methods for Materials and Imaging
材料和成像的变分方法
基本信息
- 批准号:2205627
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The objective of this project is the pursuit of a mathematically rigorous understanding of emerging nonlinear phenomena in physical and technological applications, ranging from the analysis of instabilities in materials science to image analysis in computer vision. The project will provide research training opportunities to the next generation of leaders in applied analysis cognizant of contemporary mathematical areas that underscore interdisciplinary challenges at the interface of mathematical sciences with computer science, engineering, and physical sciences.The two main themes of this project are Variational Problems for Materials and Variational Problems for Imaging. What unifies these topics is that underlying energies involve higher order derivatives in spaces with discontinuous admissible fields, multiple scales interact, bulk and surface energies compete, and degeneracy of usually expected properties prevail. These prevent the use of well understood mathematical theories and require the introduction of innovative mathematical tools. The project will provide a mathematical foundation for the understanding of aspects of materials, including materials defects (dislocations), epitaxy, micromagnetic and magnetoelastic materials, and composite materials (homogenization). Analytical tools combined with contemporary multilevel learning schemes (machine learning) will be used in imaging to address denoising of images and edge detection, recolorization, image segmentation and registration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是追求对物理和技术应用中出现的非线性现象的数学上的严格理解,从材料科学中的不稳定性分析到计算机视觉中的图像分析。该项目将为认识当代数学领域的应用分析领域的下一代领导者提供研究培训机会,这些领域突出了数学科学与计算机科学、工程和物理科学之间的跨学科挑战。该项目的两个主要主题是材料变分问题和成像变分问题。统一这些主题的是,潜在能量涉及具有不连续可容许场的空间中的高阶导数,多尺度相互作用,体能和表面能竞争,并且通常预期性质的简并性占优势。这些阻碍了人们对数学理论的理解,并要求引入创新的数学工具。该项目将为理解材料的各个方面提供数学基础,包括材料缺陷(位错)、外延、微磁性和磁弹性材料以及复合材料(均质化)。分析工具与现代多层次学习方案(机器学习)将用于成像,以解决图像去噪和边缘检测、重新着色、图像分割和配准问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene Fonseca其他文献
On a Volume‐Constrained Variational Problem
- DOI:
10.1007/s002050050166 - 发表时间:
1999-10-01 - 期刊:
- 影响因子:2.400
- 作者:
Luigi Ambrosio;Irene Fonseca;Paolo Marcellini;Luc Tartar - 通讯作者:
Luc Tartar
Material voids in elastic solids with anisotropic surface energies
- DOI:
10.1016/j.matpur.2011.07.003 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:
- 作者:
Irene Fonseca;Nicola Fusco;Giovanni Leoni;Vincent Millot - 通讯作者:
Vincent Millot
Higher order Ambrosio–Tortorelli scheme with non-negative spatially dependent parameters
具有非负空间相关参数的高阶 Ambrosio-Tortorelli 方案
- DOI:
10.1515/acv-2021-0071 - 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Irene Fonseca;Pan Liu;Xin Yang Lu - 通讯作者:
Xin Yang Lu
Structured Deformations as Energy Minimizers in Models of Fracture and Hysteresis
结构变形作为断裂和磁滞模型中的能量最小化器
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Rustum Choksi;G. Piero;Irene Fonseca;David Owen - 通讯作者:
David Owen
Higher-Order Quasiconvexity Reduces to Quasiconvexity
- DOI:
10.1007/s00205-003-0278-1 - 发表时间:
2003-09-29 - 期刊:
- 影响因子:2.400
- 作者:
Gianni Dal Maso;Irene Fonseca;Giovanni Leoni;Massimiliano Morini - 通讯作者:
Massimiliano Morini
Irene Fonseca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene Fonseca', 18)}}的其他基金
Mathematics of Microstructure in Origami, Robotics, and Electrochemistry
折纸、机器人和电化学中的微观结构数学
- 批准号:
2108784 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Variational Methods for Materials Science and Mathematical Imaging
材料科学和数学成像的变分方法
- 批准号:
1906238 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Topics in Applied Nonlinear Analysis: Recent Advances and New Trends
应用非线性分析主题:最新进展和新趋势
- 批准号:
1601475 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Variational Methods for Materials and Imaging Sciences
材料和成像科学的变分方法
- 批准号:
1411646 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
PIRE: Science at the Triple Point Between Mathematics, Mechanics and Materials Science
PIRE:数学、力学和材料科学之间的三重点科学
- 批准号:
0967140 - 财政年份:2011
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Variationals Methods in Imaging and in Materials
成像和材料中的变分方法
- 批准号:
0905778 - 财政年份:2009
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
- 批准号:
0635983 - 财政年份:2007
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
U.S.-Chile Workshop: PDEs-Preparatory Workshops; Pittsburgh, Pennsylvania; March 2006; Santiago, Chile; January 2007
美国-智利研讨会:PDE-准备研讨会;
- 批准号:
0536756 - 财政年份:2005
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Variational Problems and their Applications
变分问题及其应用
- 批准号:
0401763 - 财政年份:2004
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
- 批准号:
0405343 - 财政年份:2004
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Accessible Innovative Methods for the Safety and Sustainability Assessment of Chemicals and Materials
化学品和材料安全性和可持续性评估的可用创新方法
- 批准号:
10097666 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
EU-Funded
CHIASMA: Accessible Innovative Methods for the Safety & Sustainability Assessment of Chemicals & Materials
CHIASMA:可获取的安全创新方法
- 批准号:
10101594 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
EU-Funded
IMPLEMENTING INNOVATIVE METHODS FOR SAFETY AND SUSTAINABILITY ASSESSMENTS OF CHEMICALS AND MATERIALS PARTICULARLY AT NANO LEVEL IN THE EUROPEAN UNION
在欧盟实施化学品和材料安全性和可持续性评估的创新方法,特别是纳米级的评估
- 批准号:
10109804 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
EU-Funded
CHIASMA - ACCESSIBLE INNOVATIVE METHODS FOR THE SAFETY & SUSTAINABILITY ASSESSMENT OF CHEMICALS & MATERIALS
CHIASMA - 可行的安全创新方法
- 批准号:
10103626 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
EU-Funded
Adversarial Learning Methods for Modeling and Inverse Design of Soft Materials
软材料建模和逆向设计的对抗性学习方法
- 批准号:
2306101 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Accelerated Design of New Sustainable Battery Materials with Artificial Intelligence Methods
利用人工智能方法加速设计新型可持续电池材料
- 批准号:
2885868 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Studentship
Development of Science Teaching Materials and Experimental Demonstration Methods for Learning Difficulties of Persons with Sensory Sensitivity and Other Developmental Disabilities
针对感官敏感和其他发育障碍者学习困难的科学教材和实验演示方法的开发
- 批准号:
23K02365 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
- 批准号:
23H01028 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)