Variational Problems and their Applications

变分问题及其应用

基本信息

  • 批准号:
    0401763
  • 负责人:
  • 金额:
    $ 29.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

This proposal addresses several aspects of multiscale applied analysis within the areas of the Calculus of Variations, Partial Differential Equations, and Geometric Measure Theory. The work will entail relaxation and lower-semicontinuity results, development of higher order theories, multiple scale homogenization of length and time scales, and dimension reduction problems. The questions to be studied by the investigator and her collaborators include: - in micromagnetics, the derivation of a model for large bodies from the small bodies model which exhibits competition between the anisotropic energy and the exchange energy terms, optimal design and multiscale homogenization of poly-magnetic, different grains materials; - in thin films, the identification of the asymptotic energy as the thickness of the sample vanishes as depending on the macroscopic deformation and on the bending moment, and the characterization of Young measures generated by scaled thin film gradients. Instabilities in the heteroepitaxial growth of thin films over substrates (wet and dry wetting), and in particular the formation of islands with zero contact angle, will be studied; - the microphase separation of copolymer melts and the identification via Gamma-convergence techniques of the interfacial energy between pairs of adjacent monomers; - the asymptotic behavior of optimal urban networks as the length of the network goes to infinity, within the Monge-Kantorovich setting; - the stability of foams under the influence of surfactants, and the role of surfactants in the nucleation of Plateau borders. The research program outlined above is strongly motivated by the need to develop innovative applied mathematics capable to respond to challenges in high-end technology. Novel man-made materials often exhibit underlying models at the forefront of traditional mathematical theories. These include shape memory alloys, ferroelectric, electromagnetic and magnetostrictive materials, composites, liquid crystals, foams used in oil recovery, detergents and lightweight structural materials, and thin films. A large range of length and time scales is usually present, and multiscale aspects yield applications from bulk materials to nanostructures. In order to understand and be able to predict the behavior of such materials, and to ultimately put this knowledge to use in industry and technology, it is necessary to bridge this multitude of scales by appropriate schemes of articulated theoretical, numerical, and experimental approaches. This proposal is focused on the theoretical side of this venture, with the aim to contributing to the identification of problems of national scientific importance that offer new opportunities for the integration of applied analysis in research and in the education of advanced graduate students and postdoctoral fellows.
本提案涉及变分、偏微分方程式和几何测度论领域内多尺度应用分析的几个方面。这项工作将包括松弛和下半连续结果,高阶理论的发展,长度和时间尺度的多尺度齐次化,以及降维问题。研究人员和她的合作者将要研究的问题包括:-在微磁学中,从显示各向异性能量和交换能项之间竞争的小物体模型推导出大物体模型,多磁性、不同颗粒材料的优化设计和多尺度均化;-在薄膜中,随着样品厚度的变化,渐近能量的识别取决于宏观变形和弯矩,以及由尺度薄膜梯度产生的Young度量的表征。将研究在衬底上异质外延生长薄膜的不稳定性,特别是形成零接触角的岛屿的不稳定性;-共聚物熔体的微相分离,以及通过伽玛会聚技术识别相邻单体对之间的界面能量;-在Monge-Kantorovich环境下,随着网络长度的增加,最佳城市网络的渐近行为;-泡沫在表面活性剂影响下的稳定性,以及表面活性剂在高原边界成核中的作用。上面概述的研究计划的强烈动机是需要开发能够应对高端技术挑战的创新应用数学。在传统数学理论的前沿,新的人造材料经常展示潜在的模型。这些材料包括形状记忆合金、铁电、电磁和磁致伸缩材料、复合材料、液晶、用于采油的泡沫、洗涤剂和轻质结构材料以及薄膜。通常存在大范围的长度和时间尺度,多尺度方面产生从块状材料到纳米结构的应用。为了理解并能够预测这种材料的行为,并最终将这种知识用于工业和技术,有必要通过适当的理论、数值和实验方法方案来弥合这种众多的尺度。这项建议侧重于这一项目的理论方面,目的是帮助确定具有国家科学重要性的问题,这些问题为将应用分析纳入研究和高级研究生和博士后研究员的教育提供了新的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irene Fonseca其他文献

On a Volume‐Constrained Variational Problem
Material voids in elastic solids with anisotropic surface energies
  • DOI:
    10.1016/j.matpur.2011.07.003
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irene Fonseca;Nicola Fusco;Giovanni Leoni;Vincent Millot
  • 通讯作者:
    Vincent Millot
Higher order Ambrosio–Tortorelli scheme with non-negative spatially dependent parameters
具有非负空间相关参数的高阶 Ambrosio-Tortorelli 方案
  • DOI:
    10.1515/acv-2021-0071
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Irene Fonseca;Pan Liu;Xin Yang Lu
  • 通讯作者:
    Xin Yang Lu
Structured Deformations as Energy Minimizers in Models of Fracture and Hysteresis
结构变形作为断裂和磁滞模型中的能量最小化器
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rustum Choksi;G. Piero;Irene Fonseca;David Owen
  • 通讯作者:
    David Owen
A chromaticity-brightness model for color images denoising in a Meyer’s “u + v” framework

Irene Fonseca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irene Fonseca', 18)}}的其他基金

Variational Methods for Materials and Imaging
材料和成像的变分方法
  • 批准号:
    2205627
  • 财政年份:
    2022
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Mathematics of Microstructure in Origami, Robotics, and Electrochemistry
折纸、机器人和电化学中的微观结构数学
  • 批准号:
    2108784
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Variational Methods for Materials Science and Mathematical Imaging
材料科学和数学成像的变分方法
  • 批准号:
    1906238
  • 财政年份:
    2019
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
Topics in Applied Nonlinear Analysis: Recent Advances and New Trends
应用非线性分析主题:最新进展和新趋势
  • 批准号:
    1601475
  • 财政年份:
    2016
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Variational Methods for Materials and Imaging Sciences
材料和成像科学的变分方法
  • 批准号:
    1411646
  • 财政年份:
    2014
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
PIRE: Science at the Triple Point Between Mathematics, Mechanics and Materials Science
PIRE:数学、力学和材料科学之间的三重点科学
  • 批准号:
    0967140
  • 财政年份:
    2011
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
Variationals Methods in Imaging and in Materials
成像和材料中的变分方法
  • 批准号:
    0905778
  • 财政年份:
    2009
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
  • 批准号:
    0635983
  • 财政年份:
    2007
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Continuing Grant
U.S.-Chile Workshop: PDEs-Preparatory Workshops; Pittsburgh, Pennsylvania; March 2006; Santiago, Chile; January 2007
美国-智利研讨会:PDE-准备研讨会;
  • 批准号:
    0536756
  • 财政年份:
    2005
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
  • 批准号:
    0405343
  • 财政年份:
    2004
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Standard Grant

相似海外基金

Perspectives of Persons Living with Memory Problems and their Caregivers on Managing Eating Challenges and Swallowing Problems in the Community
记忆障碍患者及其护理人员对社区饮食挑战和吞咽问题的看法
  • 批准号:
    498000
  • 财政年份:
    2023
  • 资助金额:
    $ 29.52万
  • 项目类别:
A sociolinguistic study to identify the Japanese language problems encountered by elderly foreigners living in Japan and proposals for their linguistic resolution
一项社会语言学研究,旨在确定居住在日本的老年外国人遇到的日语问题及其语言解决方案
  • 批准号:
    22KJ3095
  • 财政年份:
    2023
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Developing subspace methods for constrained optimization problems and their application to machine learning
开发约束优化问题的子空间方法及其在机器学习中的应用
  • 批准号:
    23H03351
  • 财政年份:
    2023
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2022
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
Mixed contaminants in soil and groundwater - some fundamental problems and their relevance to remediation and treatment
土壤和地下水中的混合污染物 - 一些基本问题及其与修复和处理的相关性
  • 批准号:
    RGPIN-2018-03832
  • 财政年份:
    2022
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
Development of an educational method for the new aerospace age that includes the individual fabrication of mechanical design problems and the understanding of their performance.
开发新航空航天时代的教育方法,包括机械设计问题的单独制作和对其性能的理解。
  • 批准号:
    22K02941
  • 财政年份:
    2022
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Prosocial behaviour in children with conduct problems: Investigating putative cognitive-affective mechanisms and their malleability
有行为问题的儿童的亲社会行为:调查假定的认知情感机制及其可塑性
  • 批准号:
    MR/V033905/1
  • 财政年份:
    2022
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Research Grant
Applying attachment theory to perinatal mental health problems and their links with early postpartum parental functioning: A trans-diagnostic perspective using perinatal longitudinal cohorts.
将依恋理论应用于围产期心理健康问题及其与产后早期父母功能的联系:使用围产期纵向队列的跨诊断视角。
  • 批准号:
    470942
  • 财政年份:
    2022
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Operating Grants
Literary Activities of A. Rubinstein: The Problems of Their Re-evaluation and the Assessment of Their Relationship to Judaism
鲁宾斯坦的文学活动:重新评价的问题及其与犹太教的关系
  • 批准号:
    22K00448
  • 财政年份:
    2022
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了