Variational Methods for Materials Science and Mathematical Imaging

材料科学和数学成像的变分方法

基本信息

  • 批准号:
    1906238
  • 负责人:
  • 金额:
    $ 68.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The mathematical theories and techniques developed in this project provide a foundation for understanding aspects of imaging and of the properties of materials. The use of self-assembly processes to manufacture modern semiconductor nanostructures, quantum wires, and quantum dots is of pivotal importance in microelectric and optoelectronic technologies, such as reflective or anti-reflective coatings for optics, the fabrication of layers of insulators and semiconductors for integrated circuits, quantum well lasers, and the processing of nanoscale materials. We address the variational study of relevant observed phenomena in nanowires and in the epitaxial deposition of a thin film onto a substrate. We study phase nucleation in Lithium-Ion batteries, which are central to advances in portable electronic devices, electric vehicles, and renewable energy storage; phase nucleation is important in understanding charge-discharge dynamics (poor cycle life) and other material limitations of these batteries. In what concerns the mathematics of imaging, we pursue the analytical investigation of image processing, restoration, and registration, which are fundamental to the advance of computer vision, medical imaging, film restoration, and scanning probe microscopy. These projects offer opportunities for integrating research in applied analysis with the education of advanced graduate students at the interface between mathematics and the physical sciences and engineering. Graduate students participate in the research of the project.What unifies these topics is that underlying energies involve higher order derivatives in spaces with discontinuous admissible fields, multiple scales interact, bulk and surface energies compete, and degeneracy of usually expected properties prevails. Together, these difficulties prevent the use of well-understood mathematical theories, and require new ideas and the introduction of innovative mathematical tools. Contemporary methods in the calculus of variations and nonlinear partial differential equations are used to study quasi-static (elliptic) and evolution (parabolic) systems of equations in a range of problems arising in materials science that span epitaxy, batteries, nanowires, and phase transitions. These methods are combined in novel ways with multi-level (machine learning) training schemes to study models for edge detection, image segmentation, signal denoising and detexturing, joint image segmentation, and image registration. Graduate students participate in the research of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个项目中开发的数学理论和技术为理解成像和材料特性方面提供了基础。 使用自组装工艺来制造现代半导体纳米结构、量子线和量子点在微电子和光电技术中具有关键重要性,例如用于光学器件的反射或抗反射涂层、用于集成电路的绝缘体和半导体层的制造、量子阱激光器以及纳米级材料的处理。 我们解决变分研究纳米线和在衬底上的薄膜外延沉积的相关观察到的现象。 我们研究锂离子电池中的相位成核,这对便携式电子设备,电动汽车和可再生能源存储的进步至关重要;相位成核对于理解这些电池的充放电动力学(循环寿命差)和其他材料限制非常重要。 在成像数学方面,我们追求图像处理,恢复和配准的分析研究,这是计算机视觉,医学成像,胶片修复和扫描探针显微镜进步的基础。 这些项目提供了机会,将应用分析研究与数学与物理科学和工程之间的界面上的高级研究生教育相结合。 研究生参与了该项目的研究。将这些主题统一起来的是,潜在的能量涉及具有不连续容许场的空间中的高阶导数,多尺度相互作用,体能和表面能竞争,通常预期的性质的简并性占上风。 总之,这些困难阻止了使用很好理解的数学理论,并需要新的想法和引入创新的数学工具。 变分法和非线性偏微分方程的当代方法用于研究材料科学中出现的一系列问题的准静态(椭圆)和演化(抛物)方程组,这些问题涵盖外延、电池、纳米线和相变。 这些方法以新颖的方式与多级(机器学习)训练方案相结合,以研究边缘检测,图像分割,信号去噪和去纹理,联合图像分割和图像配准的模型。 研究生参与该项目的研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Motion of Curved Dislocations in Three Dimensions: Simplified Linearized Elasticity
  • DOI:
    10.1137/20m1325654
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Fonseca;Janusz Ginster;Stephan Wojtowytsch
  • 通讯作者:
    I. Fonseca;Janusz Ginster;Stephan Wojtowytsch
Homogenization of Quasi-Crystalline Functionals via Two-Scale-Cut-and-Project Convergence
  • DOI:
    10.1137/20m1341222
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rita Ferreira;I. Fonseca;R. Venkatraman
  • 通讯作者:
    Rita Ferreira;I. Fonseca;R. Venkatraman
The mathematics of thin structures
薄结构的数学
  • DOI:
    10.1090/qam/1628
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Babadjian, Jean-François;Di Fratta, Giovanni;Fonseca, Irene;Francfort, Gilles;Lewicka, Marta;Muratov, Cyrill
  • 通讯作者:
    Muratov, Cyrill
ANISOTROPIC SURFACE TENSIONS FOR PHASE TRANSITIONS IN PERIODIC MEDIA
周期性介质中相变的各向异性表面张力
Surface evolution of elastically stressed films
弹性应力薄膜的表面演化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irene Fonseca其他文献

On a Volume‐Constrained Variational Problem
Material voids in elastic solids with anisotropic surface energies
  • DOI:
    10.1016/j.matpur.2011.07.003
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irene Fonseca;Nicola Fusco;Giovanni Leoni;Vincent Millot
  • 通讯作者:
    Vincent Millot
Higher order Ambrosio–Tortorelli scheme with non-negative spatially dependent parameters
具有非负空间相关参数的高阶 Ambrosio-Tortorelli 方案
  • DOI:
    10.1515/acv-2021-0071
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Irene Fonseca;Pan Liu;Xin Yang Lu
  • 通讯作者:
    Xin Yang Lu
Structured Deformations as Energy Minimizers in Models of Fracture and Hysteresis
结构变形作为断裂和磁滞模型中的能量最小化器
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rustum Choksi;G. Piero;Irene Fonseca;David Owen
  • 通讯作者:
    David Owen
Higher-Order Quasiconvexity Reduces to Quasiconvexity
  • DOI:
    10.1007/s00205-003-0278-1
  • 发表时间:
    2003-09-29
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Gianni Dal Maso;Irene Fonseca;Giovanni Leoni;Massimiliano Morini
  • 通讯作者:
    Massimiliano Morini

Irene Fonseca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irene Fonseca', 18)}}的其他基金

Variational Methods for Materials and Imaging
材料和成像的变分方法
  • 批准号:
    2205627
  • 财政年份:
    2022
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Standard Grant
Mathematics of Microstructure in Origami, Robotics, and Electrochemistry
折纸、机器人和电化学中的微观结构数学
  • 批准号:
    2108784
  • 财政年份:
    2021
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Standard Grant
Topics in Applied Nonlinear Analysis: Recent Advances and New Trends
应用非线性分析主题:最新进展和新趋势
  • 批准号:
    1601475
  • 财政年份:
    2016
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Standard Grant
Variational Methods for Materials and Imaging Sciences
材料和成像科学的变分方法
  • 批准号:
    1411646
  • 财政年份:
    2014
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Continuing Grant
PIRE: Science at the Triple Point Between Mathematics, Mechanics and Materials Science
PIRE:数学、力学和材料科学之间的三重点科学
  • 批准号:
    0967140
  • 财政年份:
    2011
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Continuing Grant
Variationals Methods in Imaging and in Materials
成像和材料中的变分方法
  • 批准号:
    0905778
  • 财政年份:
    2009
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
  • 批准号:
    0635983
  • 财政年份:
    2007
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Continuing Grant
U.S.-Chile Workshop: PDEs-Preparatory Workshops; Pittsburgh, Pennsylvania; March 2006; Santiago, Chile; January 2007
美国-智利研讨会:PDE-准备研讨会;
  • 批准号:
    0536756
  • 财政年份:
    2005
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Standard Grant
Variational Problems and their Applications
变分问题及其应用
  • 批准号:
    0401763
  • 财政年份:
    2004
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
  • 批准号:
    0405343
  • 财政年份:
    2004
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Standard Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Continuing Grant
Accessible Innovative Methods for the Safety and Sustainability Assessment of Chemicals and Materials
化学品和材料安全性和可持续性评估的可用创新方法
  • 批准号:
    10097666
  • 财政年份:
    2024
  • 资助金额:
    $ 68.42万
  • 项目类别:
    EU-Funded
CHIASMA: Accessible Innovative Methods for the Safety & Sustainability Assessment of Chemicals & Materials
CHIASMA:可获取的安全创新方法
  • 批准号:
    10101594
  • 财政年份:
    2024
  • 资助金额:
    $ 68.42万
  • 项目类别:
    EU-Funded
IMPLEMENTING INNOVATIVE METHODS FOR SAFETY AND SUSTAINABILITY ASSESSMENTS OF CHEMICALS AND MATERIALS PARTICULARLY AT NANO LEVEL IN THE EUROPEAN UNION
在欧盟实施化学品和材料安全性和可持续性评估的创新方法,特别是纳米级的评估
  • 批准号:
    10109804
  • 财政年份:
    2024
  • 资助金额:
    $ 68.42万
  • 项目类别:
    EU-Funded
CHIASMA - ACCESSIBLE INNOVATIVE METHODS FOR THE SAFETY & SUSTAINABILITY ASSESSMENT OF CHEMICALS & MATERIALS
CHIASMA - 可行的安全创新方法
  • 批准号:
    10103626
  • 财政年份:
    2024
  • 资助金额:
    $ 68.42万
  • 项目类别:
    EU-Funded
Adversarial Learning Methods for Modeling and Inverse Design of Soft Materials
软材料建模和逆向设计的对抗性学习方法
  • 批准号:
    2306101
  • 财政年份:
    2023
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Standard Grant
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
  • 批准号:
    23H01028
  • 财政年份:
    2023
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Accelerated Design of New Sustainable Battery Materials with Artificial Intelligence Methods
利用人工智能方法加速设计新型可持续电池材料
  • 批准号:
    2885868
  • 财政年份:
    2023
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Studentship
Development of Science Teaching Materials and Experimental Demonstration Methods for Learning Difficulties of Persons with Sensory Sensitivity and Other Developmental Disabilities
针对感官敏感和其他发育障碍者学习困难的科学教材和实验演示方法的开发
  • 批准号:
    23K02365
  • 财政年份:
    2023
  • 资助金额:
    $ 68.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了