Center for Nonlinear Analysis: Research and Training in Applied Mathematics

非线性分析中心:应用数学研究和培训

基本信息

  • 批准号:
    0635983
  • 负责人:
  • 金额:
    $ 214.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

Proposal ID: 0635983PI: Irene FonsecaInstitution: Carnegie-Mellon UniversityTitle: Center for Nonlinear Analysis: Research and Training in Applied MathematicsAbstractThe Center for Nonlinear Analysis (CNA), founded in 1991 in theDepartment of Mathematical Sciences at Carnegie Mellon University, isa center for research and training in applied mathematics supported bythe National Science Foundation. The continued funding of the CNA fromthe RTG program will allow it to recruit strong US graduate students andpostdocs and expose them to the wealth of expertise in nonlinearanalysis, computation, and interdisciplinary activitythat exists across Carnegie Mellon research units. The goals of the CNAinclude:-- To identify cutting-edge mathematical questions in science and engineering, including materials science and biotechnology, tohighlight emerging andnew areas in mathematics deriving from applications, and to develop newapplications of mathematical sciences;-- To maintain and sustain its leadership in the areas of Calculus of Variations and PDEs;-- To promote collaborations between applied mathematicians andallied scientists;-- To continue to develop international partnerships and cooperation agreements, which play a vital part inthe CNA program and in the enhancement of thescientific training and research activities of the Center;-- To maintain its position as a worldwide asset in the educationof young investigators cognizant of research opportunities at the broadinterface between mathematics and physical sciences and engineering;-- To continue the valuable work of the Summer Undergraduate AppliedMathematics Institute (SUAMI), which targets minorities and women withthe goal of recruiting them to pursue graduate study in applied mathematics.Over the past 15 years the CNA has trained more than 52 postdoctoralfellows. The CNA is very proud of its trainees: Several former CNApostdocs are now scientific leaders in their own right at researchinstitutions in the US and abroad, and many others are ripe to assumeleadership roles in the near future. The imprint of the CNA in themathematical and scientific community is large and growing. Thecollaborations of CNA members with experimentalists, theorists,physical scientists, and bioscientists, render this group one of thestrongest research and training groups in applied mathematics in theUS and in the world. Investigators associated with the CNA have been inthe front ranks in integrating the discovery of new mathematics andmathematical ways of understanding with other modes of scientificinvestigation, particularly in materials science.The aim is to develop first-rate mathematical science inways that have a healthy and exciting relation to emerging areas ofimportance in the physical and biological sciences.
提案ID:0635983 PI:Irene Fonseca机构:美国梅隆大学非线性分析中心:非线性分析中心(CNA)成立于1991年,隶属于卡内基梅隆大学数学科学系,伊萨美国国家科学基金会资助的应用数学研究和培训中心。来自RTG计划的CNA的持续资助将使其能够招募强大的美国研究生和博士后,并使他们接触到卡内基梅隆大学研究单位存在的非线性分析,计算和跨学科活动的丰富专业知识。 CNA的目标包括:--识别科学中的前沿数学问题, 工程,包括材料科学和生物技术,以突出新兴和新领域的数学衍生的应用,并开发数学科学的新应用;-保持和维持其领导地位,在微积分领域的 变量和偏微分方程;--促进应用数学家和相关科学家之间的合作;--继续发展国际伙伴关系 与合作协议,这在CNA计划中发挥了至关重要的作用,并在加强科学培训和中心的研究活动;--保持其作为一个世界性的资产,在教育的年轻研究人员认识到在数学和物理科学和工程之间的广泛接口的研究机会;--继续开展暑期大学生数学研究所(SUAMI)的宝贵工作,针对少数民族和妇女,目标是招募他们攻读应用数学的研究生课程。在过去的15年里,培养了超过52名博士后研究员。CNA为它的学员感到非常自豪:几位前CNApostdocs现在是美国和国外研究机构的科学领导者,还有许多人在不久的将来也会成为领导者。CNA在数学和科学界的影响是巨大的,而且还在不断扩大。 CNA成员与实验学家,理论家,物理科学家和生物科学家的合作,使这个小组成为美国和世界上应用数学最强大的研究和培训小组之一。与CNA有关的研究人员在将新的数学和数学理解方法的发现与其他科学研究模式相结合方面一直处于前列,特别是在材料科学方面。其目的是发展一流的数学科学,并与物理和生物科学中的新兴重要领域建立健康和令人兴奋的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irene Fonseca其他文献

On a Volume‐Constrained Variational Problem
Material voids in elastic solids with anisotropic surface energies
  • DOI:
    10.1016/j.matpur.2011.07.003
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irene Fonseca;Nicola Fusco;Giovanni Leoni;Vincent Millot
  • 通讯作者:
    Vincent Millot
Higher order Ambrosio–Tortorelli scheme with non-negative spatially dependent parameters
具有非负空间相关参数的高阶 Ambrosio-Tortorelli 方案
  • DOI:
    10.1515/acv-2021-0071
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Irene Fonseca;Pan Liu;Xin Yang Lu
  • 通讯作者:
    Xin Yang Lu
Structured Deformations as Energy Minimizers in Models of Fracture and Hysteresis
结构变形作为断裂和磁滞模型中的能量最小化器
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rustum Choksi;G. Piero;Irene Fonseca;David Owen
  • 通讯作者:
    David Owen
Higher-Order Quasiconvexity Reduces to Quasiconvexity
  • DOI:
    10.1007/s00205-003-0278-1
  • 发表时间:
    2003-09-29
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Gianni Dal Maso;Irene Fonseca;Giovanni Leoni;Massimiliano Morini
  • 通讯作者:
    Massimiliano Morini

Irene Fonseca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irene Fonseca', 18)}}的其他基金

Variational Methods for Materials and Imaging
材料和成像的变分方法
  • 批准号:
    2205627
  • 财政年份:
    2022
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Standard Grant
Mathematics of Microstructure in Origami, Robotics, and Electrochemistry
折纸、机器人和电化学中的微观结构数学
  • 批准号:
    2108784
  • 财政年份:
    2021
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Standard Grant
Variational Methods for Materials Science and Mathematical Imaging
材料科学和数学成像的变分方法
  • 批准号:
    1906238
  • 财政年份:
    2019
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Continuing Grant
Topics in Applied Nonlinear Analysis: Recent Advances and New Trends
应用非线性分析主题:最新进展和新趋势
  • 批准号:
    1601475
  • 财政年份:
    2016
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Standard Grant
Variational Methods for Materials and Imaging Sciences
材料和成像科学的变分方法
  • 批准号:
    1411646
  • 财政年份:
    2014
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Continuing Grant
PIRE: Science at the Triple Point Between Mathematics, Mechanics and Materials Science
PIRE:数学、力学和材料科学之间的三重点科学
  • 批准号:
    0967140
  • 财政年份:
    2011
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Continuing Grant
Variationals Methods in Imaging and in Materials
成像和材料中的变分方法
  • 批准号:
    0905778
  • 财政年份:
    2009
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Continuing Grant
U.S.-Chile Workshop: PDEs-Preparatory Workshops; Pittsburgh, Pennsylvania; March 2006; Santiago, Chile; January 2007
美国-智利研讨会:PDE-准备研讨会;
  • 批准号:
    0536756
  • 财政年份:
    2005
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Standard Grant
Variational Problems and their Applications
变分问题及其应用
  • 批准号:
    0401763
  • 财政年份:
    2004
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
  • 批准号:
    0405343
  • 财政年份:
    2004
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Standard Grant

相似海外基金

Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
  • 批准号:
    22KJ2815
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis on delta function type singularities in nonlinear heat equations
非线性热方程中δ函数型奇点分析
  • 批准号:
    23K03161
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
  • 批准号:
    23K03274
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterising Neurological Disorders with Nonlinear System Identification and Network Analysis
通过非线性系统识别和网络分析来表征神经系统疾病
  • 批准号:
    EP/X020193/1
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Research Grant
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
  • 批准号:
    23KJ0293
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theoretical Establishment of Nonlinear Model Reduction Method and Its Application to Motor Analysis
非线性模型降阶方法的理论建立及其在电机分析中的应用
  • 批准号:
    23KJ1202
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
  • 批准号:
    10643212
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
Analysis of blow-up phenomena for nonlinear parabolic equations
非线性抛物方程的爆炸现象分析
  • 批准号:
    23K13005
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 214.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了