Vertex algebras and geometry of manifolds
顶点代数和流形几何
基本信息
- 批准号:0500573
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to further the understanding of therelation between vertex algebras and the geometry of manifolds.This relation, discovered relatively recently, is an infinitedimensional version of the classical relation between theoreticalphysics and mathematics. Indeed, quantum mechanics of a particleon a manifold is a part of analysis on manifolds. Similarly,super-symmetric quantum mechanics is essentially equivalent tothe study of the de Rham complex on manifolds. Attempts to carrythis over to the case of the space of loops on a manifold havecreated an entirely new Universe of mathematical and physicalconcepts. One such concept, vertex algebra, a child of stringtheory and infinite dimensional representation theory, has alreadyproved indispensable in areas as remote form mathematical physicsas abstract finite group theory. Relatively recently, thanks towork of Gorbounov and Malikov among others, vertex algebras havebeen fruitfully applied to several chapters of geometry includingelliptic genus and mirror symmetry.String theory, a part of quantum field theory and the onlyexisting candidate for the "theory of everything", while havingnot yet achieved its ultimate goal, has enriched modernmathematics and physics with a dazzling array of new concepts andnew relations among old concepts. Vertex algebra, a concept thatsimultaneously generalizes the notions of Lie and commutativealgebra, is one conspicuous example. It has long since foundapplications in areas as old and diverse as representation theory,group theory, combinatorics, and number theory. The presentproject is devoted to the exploration of a recently discoveredrelation to geometry of higher dimensional spaces.
这个项目的目的是进一步了解顶点代数和流形几何之间的关系。这种关系是最近才发现的,是理论物理和数学之间经典关系的无限维版本。实际上,流形粒子的量子力学是流形分析的一部分。同样,超对称量子力学本质上等同于流形上的德拉姆复形的研究。将这一理论应用于流形上的循环空间的尝试,创造了一个全新的数学和物理概念的宇宙。其中一个概念,顶点代数,弦理论和无限维表示理论的产物,已经被证明在远程数学物理和抽象有限群论等领域不可或缺。最近,多亏了Gorbounov和Malikov等人的工作,顶点代数在几何学的几个章节中得到了丰硕的应用,包括椭圆属和镜像对称。弦理论是量子场论的一部分,是“万有理论”的唯一候选者,虽然尚未达到其最终目标,但却以一系列令人眼花缭乱的新概念和旧概念之间的新关系丰富了现代数学和物理学。顶点代数是一个突出的例子,它同时推广了李代数和交换代数的概念。它早已在诸如表示理论、群论、组合学和数论等古老而多样的领域中得到了应用。本项目致力于探索最近发现的与高维空间几何的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feodor Malikov其他文献
Feodor Malikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feodor Malikov', 18)}}的其他基金
Vertex algebras and geometry of manifolds
顶点代数和流形几何
- 批准号:
0800426 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Representation Theory and Quantum Field Theory
表示论和量子场论
- 批准号:
0200834 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Representation Theory and Quantum Field Theory
表示论和量子场论
- 批准号:
9970499 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Representation Theory and Conformal Field Theory
表示论和共形场论
- 批准号:
9701589 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
- 批准号:
9696028 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
- 批准号:
9401215 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
- 批准号:
2143922 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
- 批准号:
SAPIN-2020-00039 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Individual
Conference: Geometry and Physics---Deformations, Homotopy Algebras, and Higher Structures
会议:几何与物理——变形、同伦代数和更高结构
- 批准号:
2201270 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
- 批准号:
RGPIN-2020-04845 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
INVARIANT ALGEBRAS IN HYPERBOLIC GEOMETRY
双曲几何中的不变代数
- 批准号:
EP/V048546/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
- 批准号:
SAPIN-2020-00039 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Individual
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
- 批准号:
21K13781 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists