Representation Theory and Quantum Field Theory
表示论和量子场论
基本信息
- 批准号:9970499
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9970499The present proposal is focused on the study of sheaves of vertex algebras over smooth manifolds introduced in a recent work by Schechtman, Vaintrob and the author. The ultimate goal of such a study is the classification of the corresponding cohomology vertex algebras and their modules. This should find interesting applications in quantum cohomology and mirror symmetry.The theory of vertex algebras is a mathematical tool intended for the explanation of conformal field theory. The above-mentioned sheaves of vertex algebras are supposed to explain some recent developments in topological field theory. This line of research has already produced certain results valuable for mathematics itself.
9970499本文主要研究光滑流形上顶点代数层的性质,这是Schechhtman,Vaintrob和作者在最近的工作中提出的. 这种研究的最终目的是对相应的上同调顶点代数及其模进行分类。 这应该在量子上同调和镜像对称中找到有趣的应用。顶点代数理论是用于解释共形场论的数学工具。 顶点代数的上述层被认为可以解释拓扑场论中的一些最新发展。 这条研究路线已经产生了某些对数学本身有价值的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feodor Malikov其他文献
Feodor Malikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feodor Malikov', 18)}}的其他基金
Vertex algebras and geometry of manifolds
顶点代数和流形几何
- 批准号:
0800426 - 财政年份:2008
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Vertex algebras and geometry of manifolds
顶点代数和流形几何
- 批准号:
0500573 - 财政年份:2005
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Representation Theory and Quantum Field Theory
表示论和量子场论
- 批准号:
0200834 - 财政年份:2002
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Representation Theory and Conformal Field Theory
表示论和共形场论
- 批准号:
9701589 - 财政年份:1997
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
- 批准号:
9696028 - 财政年份:1995
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
- 批准号:
9401215 - 财政年份:1994
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Categorical methods in representation theory and quantum topology
会议:表示论和量子拓扑中的分类方法
- 批准号:
2204700 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Quantum algebra: from representation theory to integrable systems
量子代数:从表示论到可积系统
- 批准号:
2744813 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Studentship
Higher Depth in Representation Theory, Number Theory, and Quantum Topology
更深入的表示论、数论和量子拓扑
- 批准号:
2101844 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Representation theory of elliptic quantum toroidal algebras and its application to integrable systems
椭圆量子环代数表示论及其在可积系统中的应用
- 批准号:
21K03191 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Interaction and number, representation theory, discrete dynamics
量子相互作用与数、表示论、离散动力学
- 批准号:
20K03560 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
- 批准号:
20K03507 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of quantum affine algebras and its applications in geometry and combinatorics
量子仿射代数表示论及其在几何和组合学中的应用
- 批准号:
19K14519 - 财政年份:2019
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists