Vertex algebras and geometry
顶点代数和几何
基本信息
- 批准号:1101078
- 负责人:
- 金额:$ 18.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebras of chiral differential operators, a concept around which this project is centered, are in this class and were introduced by Schechtman, Vaintrob, and the principal investigator some 10 years ago. Here is the list of the main topics addressed in this project: 1. Gerbes of asymptotic chiral differential operators on smooth algebraic varieties. 2. Asymptotic chiral differential operators and localization of affine W-algebras. W-algebras and singularity theory. 3. Asymptotic chiral differential operators on singular affine algebraic varieties. Semi-infinite induction functor and string theory.The present project belongs in the interface of mathematics, especially its algebro-geometric part, and modern quantum field theory. Classical mechanics is adequately described by such algebraic structures as Poisson algebras, quantization is usually satisfactorily reflected in geometric representation theory. The passage to fields drastically changes the landscape and, in particular, leads to such modern and still poorly understood concepts as a vertex Poisson algebra and a vertex algebra.
手征微分算子的代数是本项目的核心概念,属于这一类,大约10年前由Scheck htman、Vaintrob和主要研究人员引入。本课题的主要研究内容如下:1.光滑代数簇上渐近手征微分算子的萌芽。2.渐近手征微分算子与仿射W-代数的局部化W-代数与奇点理论。3.奇异仿射代数簇上的渐近手征微分算子。半无限感应函子和弦理论。本项目属于数学,特别是它的代数几何部分,和现代量子场论的接口。经典力学可以用Poisson代数这样的代数结构来描述,量子化通常很好地反映在几何表示理论中。通向田野的这段旅程极大地改变了地貌,特别是导致了现代的、仍然鲜为人知的概念,如顶点泊松代数和顶点代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feodor Malikov其他文献
Feodor Malikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feodor Malikov', 18)}}的其他基金
Vertex algebras and geometry of manifolds
顶点代数和流形几何
- 批准号:
0800426 - 财政年份:2008
- 资助金额:
$ 18.08万 - 项目类别:
Continuing Grant
Vertex algebras and geometry of manifolds
顶点代数和流形几何
- 批准号:
0500573 - 财政年份:2005
- 资助金额:
$ 18.08万 - 项目类别:
Continuing Grant
Representation Theory and Quantum Field Theory
表示论和量子场论
- 批准号:
0200834 - 财政年份:2002
- 资助金额:
$ 18.08万 - 项目类别:
Continuing Grant
Representation Theory and Quantum Field Theory
表示论和量子场论
- 批准号:
9970499 - 财政年份:1999
- 资助金额:
$ 18.08万 - 项目类别:
Standard Grant
Representation Theory and Conformal Field Theory
表示论和共形场论
- 批准号:
9701589 - 财政年份:1997
- 资助金额:
$ 18.08万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
- 批准号:
9696028 - 财政年份:1995
- 资助金额:
$ 18.08万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
- 批准号:
9401215 - 财政年份:1994
- 资助金额:
$ 18.08万 - 项目类别:
Standard Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 18.08万 - 项目类别:
Standard Grant
CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
- 批准号:
2143922 - 财政年份:2022
- 资助金额:
$ 18.08万 - 项目类别:
Continuing Grant
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 18.08万 - 项目类别:
Postdoctoral Fellowships
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
- 批准号:
SAPIN-2020-00039 - 财政年份:2022
- 资助金额:
$ 18.08万 - 项目类别:
Subatomic Physics Envelope - Individual
Conference: Geometry and Physics---Deformations, Homotopy Algebras, and Higher Structures
会议:几何与物理——变形、同伦代数和更高结构
- 批准号:
2201270 - 财政年份:2022
- 资助金额:
$ 18.08万 - 项目类别:
Standard Grant
Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
- 批准号:
RGPIN-2020-04845 - 财政年份:2022
- 资助金额:
$ 18.08万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 18.08万 - 项目类别:
Standard Grant
INVARIANT ALGEBRAS IN HYPERBOLIC GEOMETRY
双曲几何中的不变代数
- 批准号:
EP/V048546/1 - 财政年份:2021
- 资助金额:
$ 18.08万 - 项目类别:
Research Grant
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
- 批准号:
SAPIN-2020-00039 - 财政年份:2021
- 资助金额:
$ 18.08万 - 项目类别:
Subatomic Physics Envelope - Individual
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
- 批准号:
21K13781 - 财政年份:2021
- 资助金额:
$ 18.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists