Vertex algebras and geometry of manifolds
顶点代数和流形几何
基本信息
- 批准号:0800426
- 负责人:
- 金额:$ 22.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to further the understanding of how vertex algebras are related to geometry of manifolds. While vertex algebras, a relatively new concept in algebra, have always been understood as an essential part of conformal field theory, their relation to higher dimensional geometry, even though implicit in string theory, had been rather obscure for a while. In 1998 Malikov, Schechtman and Vaintrob proposed the notion of chiral differential operators as a direct such link. Later work has found several applications of this new theory and, rather recently, Witten and Kapustin identified algebras of chiral differential operators with the so-called Witten half-twisted model in string theory.One characteristic feature of this proposal is that it truly belongs to the interface of several disparate disciplines, such as algebra, geometry, and theoretical physics. Indeed, vertex algebras are purely algebraic objects, which only relatively recently were found to be closely related to geometry of manifolds. On the other hand, this area of research is essentially a mathematical counterpart of the physics of strings. The results of the proposal are therefore expected to have a broad impact on research community.
这个项目的目的是进一步了解顶点代数是如何与几何流形。虽然顶点代数是代数中一个相对较新的概念,一直被认为是共形场论的重要组成部分,但它们与高维几何的关系,即使隐含在弦理论中,也有一段时间是相当模糊的。1998年,Malikov,Schechtman和Vaintrob提出了手征微分算子的概念作为直接的联系。后来的工作发现了这个新理论的几个应用,而最近,维滕和卡普斯廷确定了代数的手征微分算子与所谓的维滕半扭曲模型在弦理论。这个建议的一个特点是,它真正属于几个不同的学科,如代数,几何和理论物理的接口。事实上,顶点代数是纯粹的代数对象,直到最近才被发现与流形几何密切相关。另一方面,这个研究领域本质上是弦物理学的数学对应。因此,该提案的结果预计将对研究界产生广泛影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feodor Malikov其他文献
Feodor Malikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feodor Malikov', 18)}}的其他基金
Vertex algebras and geometry of manifolds
顶点代数和流形几何
- 批准号:
0500573 - 财政年份:2005
- 资助金额:
$ 22.2万 - 项目类别:
Continuing Grant
Representation Theory and Quantum Field Theory
表示论和量子场论
- 批准号:
0200834 - 财政年份:2002
- 资助金额:
$ 22.2万 - 项目类别:
Continuing Grant
Representation Theory and Quantum Field Theory
表示论和量子场论
- 批准号:
9970499 - 财政年份:1999
- 资助金额:
$ 22.2万 - 项目类别:
Standard Grant
Representation Theory and Conformal Field Theory
表示论和共形场论
- 批准号:
9701589 - 财政年份:1997
- 资助金额:
$ 22.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
- 批准号:
9696028 - 财政年份:1995
- 资助金额:
$ 22.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
- 批准号:
9401215 - 财政年份:1994
- 资助金额:
$ 22.2万 - 项目类别:
Standard Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 22.2万 - 项目类别:
Standard Grant
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 22.2万 - 项目类别:
Postdoctoral Fellowships
CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
- 批准号:
2143922 - 财政年份:2022
- 资助金额:
$ 22.2万 - 项目类别:
Continuing Grant
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
- 批准号:
SAPIN-2020-00039 - 财政年份:2022
- 资助金额:
$ 22.2万 - 项目类别:
Subatomic Physics Envelope - Individual
Conference: Geometry and Physics---Deformations, Homotopy Algebras, and Higher Structures
会议:几何与物理——变形、同伦代数和更高结构
- 批准号:
2201270 - 财政年份:2022
- 资助金额:
$ 22.2万 - 项目类别:
Standard Grant
Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
- 批准号:
RGPIN-2020-04845 - 财政年份:2022
- 资助金额:
$ 22.2万 - 项目类别:
Discovery Grants Program - Individual
INVARIANT ALGEBRAS IN HYPERBOLIC GEOMETRY
双曲几何中的不变代数
- 批准号:
EP/V048546/1 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Research Grant
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
- 批准号:
SAPIN-2020-00039 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Subatomic Physics Envelope - Individual
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Standard Grant
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
- 批准号:
21K13781 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists