Hyperbolic Manifolds: Geometry, Topology, Group Theory and Arithmetic

双曲流形:几何、拓扑、群论和算术

基本信息

  • 批准号:
    0503753
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2009-12-31
  • 项目状态:
    已结题

项目摘要

Motivated by considerations in topology, geometry, arithmetic andgroup theory the proposal intends to study real, complex andquaternionic hyperbolic manifolds. This will involve the study ofdiscrete groups, and their connections with other research active areas; forexample number theory, and the theory of expandinggraphs. We will also explore various interconnections between thesegeometric objects. This has been fruitful in the past, since previous work has shown how an understanding of higher dimensionalhyperbolic manifolds can impact the topology of 3-dimensional manifolds.The proposal seeks to further understand basic objects in moderngeometry and topology, namely manifolds that admit a hyperbolic metricof some type. Many of the problems in the proposal arecross-disciplinary, and are amenable to study using a broad spectrumof mathematical technqiues; for example from number theory, geometry,topology and group theory.By their nature, progress and solutions to problems in the proposalwill have a broader impact. The problems suggested have applicationsin fields as diverse as number theory (class numbers) and cosmology(and its relation to the topology of 4-dimensional hyperbolicmanifolds) and computer science (expanding graphs). All of these havethe potential to be fertile grounds for the education of graduatestudents.
出于对拓扑学、几何学、算术和群论的考虑,该建议旨在研究真实的、复和四元数双曲流形。这将涉及离散群的研究,以及它们与其他研究领域的联系,例如数论和扩展图理论。我们还将探讨这些几何对象之间的各种互连。这在过去是富有成效的,因为以前的工作已经表明了对高维双曲流形的理解如何影响三维流形的拓扑。该提案旨在进一步理解现代几何和拓扑中的基本对象,即允许某种类型的双曲度量的流形。 提案中的许多问题都是跨学科的,并且可以使用广泛的数学技术进行研究;例如,从数论,几何学,拓扑学和群论。由于其性质,提案中问题的进展和解决方案将产生更广泛的影响。所提出的问题在数论(类数)、宇宙学(及其与四维双曲流形拓扑的关系)和计算机科学(扩展图)等不同领域都有应用。所有这些都有可能成为研究生教育的沃土。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Reid其他文献

High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome
疑似急性冠状动脉综合征患者就诊时的高敏心肌肌钙蛋白 I
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anoop S. V. Shah;A. Anand;Y. Sandoval;K. K. Lee;Stephen W. Smith;P. Adamson;A. Chapman;Timothy Langdon;D. Sandeman;Amar Vaswani;F. Strachan;A. Ferry;A. Stirzaker;Alan Reid;A. Gray;P. Collinson;D. McAllister;F. Apple;D. Newby;N. Mills
  • 通讯作者:
    N. Mills
High-Sensitivity Cardiac Troponin on Presentation to Rule Out Myocardial Infarction
高敏心肌肌钙蛋白检查可排除心肌梗塞
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Relational Symmetries of Disaster Resilience Explored Through the Sendai Framework’s Guiding Principles
通过仙台框架的指导原则探讨灾害恢复力的关系对称性
High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomised controlled trial
高敏心肌肌钙蛋白可排除心肌梗死:阶梯楔形集群随机对照试验
  • DOI:
    10.1101/2020.09.06.20189308
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Renewing the public and the role of research in education

Alan Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Reid', 18)}}的其他基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Representations and Rigidity
表述和刚性
  • 批准号:
    1812397
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1755177
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances
几何群论和低维拓扑:最新联系和进展
  • 批准号:
    1624301
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop on mapping class groups of surfaces and outer automorphism groups of free groups
曲面类群映射和自由群外自同构群研讨会
  • 批准号:
    1542752
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1463740
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Moduli spaces, Extremality and Global Invariants
模空间、极值和全局不变量
  • 批准号:
    1305448
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Covering spaces of 3-manifolds and representations of their fundamental groups
3-流形的覆盖空间及其基本群的表示
  • 批准号:
    1105002
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Interactions between the geometry of Banach spaces and other areas
Banach 空间的几何形状与其他区域之间的相互作用
  • 批准号:
    0968813
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Finite covers of hyperbolic 3-manifolds
双曲3流形的有限覆盖
  • 批准号:
    0805828
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

The Geometry of Hyperbolic 3-Manifolds
双曲3流形的几何
  • 批准号:
    2202718
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Hyperbolic manifolds from a contact geometry perspective
从接触几何角度看双曲流形
  • 批准号:
    2750796
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
  • 批准号:
    1906323
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deformation Space of Hyperbolic Manifolds and Lorentzian Geometry
双曲流形的变形空间与洛伦兹几何
  • 批准号:
    15K04841
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
3-Manifolds: Heegaard Splittings, the Curve Complex, and Hyperbolic Geometry
3-流形:Heegaard 分裂、复合曲线和双曲几何
  • 批准号:
    1308209
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conformal Geometry and Asymptotically Hyperbolic Manifolds
共形几何和渐近双曲流形
  • 批准号:
    1308266
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry and topology of curves and surfaces in closed hyperbolic manifolds
闭双曲流形中曲线和曲面的几何和拓扑
  • 批准号:
    1201463
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometry, algebra, and analysis of moduli of hyperbolic manifolds
几何、代数和双曲流形模分析
  • 批准号:
    1104871
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
  • 批准号:
    1240329
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative research: Hyperbolic geometry of knots and 3-manifolds
合作研究:结和三流形的双曲几何
  • 批准号:
    1007221
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了