Differential and Integral Equations in Neurobiology

神经生物学中的微分方程和积分方程

基本信息

  • 批准号:
    0513500
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

Methods from nonlinear dynamics are used to study the coupling between oscillators and non-oscillators in model neuronal networks. Specifically, averaging is used to analyze the termination of waves in spatially connected networks by reducing the complicated conductance-based models to scalar spatial models. Phase-plane methods are applied to the reduced systems. Averaging is also used at the single spike level to understand the transition between synchrony and asynchrony in coupled networks that have different types of connections. Population density methods and linearized stability analysis will distinguish between the onset of synchrony, clusters, and propagating waves in spatially distributed networks of neural oscillators. Indirect coupling between excitable and oscillatory cells will be analyzed using a combination of phase-resetting curves and the dispersive properties of excitable cables.When neurons are connected together, they can often produce persistent activity. Such persistent activity has been implicated in short-term memory -- how an animal or human "holds a thought." What kinds of interactions disrupt this and which are necessary to maintain the activity are some of the questions that are asked in this proposal. When activity is too persistent then certain pathologies arise such as epilepsy. Thus, one goal of this proposal is to understand how to strike a balance between the ability to produce stable persistent activity while preventing its pathological propagation into quiet regions. When neurons fire they communicate with other neurons and depending on the interactions, the result can be that the neurons want to fire together or they want to fire asynchronously. The latter is useful for persistent activity. Synchrony on the other hand is crucial for several normal physiological processes. For example, it is known that certain cells in the base of the brain organize the output of hormones. The electrical activity of these cells is synchronized yet the mechanisms for this synchrony remain unknown since there are no direct connections between the individual oscillating neurons. We will study mechanism through which indirect coupling can produce synchronous behavior. Tools and methods developed in this proposal will have applications well beyond neuroscience, as the questions of synchrony and propagation of "information" are ubiquitous in biology from the single cell level on up to the ecological interactions between populations.
利用非线性动力学的方法研究了模型神经元网络中振子与非振子之间的耦合。具体而言,平均是用来分析波的终止在空间连接的网络,减少复杂的电导为基础的模型,标量空间模型。相平面法应用于简化系统。平均也用于单个尖峰水平,以了解具有不同类型连接的耦合网络中同步和同步之间的转换。种群密度方法和线性稳定性分析将区分同步的开始、集群和空间分布的神经振荡器网络中的传播波。可兴奋细胞和振荡细胞之间的间接耦合将使用相位重置曲线和可兴奋电缆的色散特性进行分析。当神经元连接在一起时,它们通常会产生持续的活动。 这种持续的活动与短期记忆有关--动物或人类如何"持有一个想法"。"什么样的相互作用会破坏这一点,哪些是维持活动所必需的,这是本提案中提出的一些问题。当活动过于持久时,就会出现某些病理,如癫痫。因此,该提议的一个目标是了解如何在产生稳定持续活动的能力与防止其病理传播到安静区域之间取得平衡。当神经元激发时,它们与其他神经元进行通信,根据相互作用,结果可能是神经元想要一起激发或想要异步激发。后者对持续活动很有用。另一方面,同步性对几个正常的生理过程至关重要。例如,已知大脑底部的某些细胞组织激素的输出。这些细胞的电活动是同步的,但这种同步的机制仍然未知,因为各个振荡神经元之间没有直接联系。 我们将研究间接耦合产生同步行为的机制。在这个提议中开发的工具和方法的应用将远远超出神经科学,因为“信息”的同步和传播问题在生物学中无处不在,从单细胞水平到种群之间的生态相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bard Ermentrout其他文献

サイコパシーと攻撃性の関連に及ぼす共感性と注意の影響
同理心和注意力对精神病和攻击性之间关联的影响。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akihiko Akao;Sho Shirasaka;Yasuhiko Jimbo;Bard Ermentrout;Kiyoshi Kotani;田村紋女・杉浦義典
  • 通讯作者:
    田村紋女・杉浦義典
Immune response to influenza A
  • DOI:
    10.1016/j.jcrc.2008.03.026
  • 发表时间:
    2008-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ian Price;David Swigon;Bard Ermentrout;Ted Ross;Franklin Toapanta;Gilles Clermont
  • 通讯作者:
    Gilles Clermont
Simulation of networks of spiking neurons: A review of tools and strategies
  • DOI:
    10.1007/s10827-007-0038-6
  • 发表时间:
    2007-07-12
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Romain Brette;Michelle Rudolph;Ted Carnevale;Michael Hines;David Beeman;James M. Bower;Markus Diesmann;Abigail Morrison;Philip H. Goodman;Frederick C. Harris;Milind Zirpe;Thomas Natschläger;Dejan Pecevski;Bard Ermentrout;Mikael Djurfeldt;Anders Lansner;Olivier Rochel;Thierry Vieville;Eilif Muller;Andrew P. Davison;Sami El Boustani;Alain Destexhe
  • 通讯作者:
    Alain Destexhe
474 CYCLICAL ICC-ENS INTERACTIONS ACT AS THE PACEMAKER FOR RHYTHMIC MOTILITY IN THE PROXIMAL COLON: AN EVIDENCE-BASED HYPOTHESIS
  • DOI:
    10.1016/s0016-5085(23)01186-1
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Brian Edwards;Emma Stiglitz;Andrea Welsh;Bard Ermentrout;Brian Davis;Kristen Smith-Edwards
  • 通讯作者:
    Kristen Smith-Edwards
Immune response to influenza A
  • DOI:
    10.1016/j.jcrc.2009.06.039
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ian Price;David Swigon;Bard Ermentrout;Frank Toapanta;Ted Ross;Gilles Clermont
  • 通讯作者:
    Gilles Clermont

Bard Ermentrout的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bard Ermentrout', 18)}}的其他基金

Spatiotemporal Dynamics of Nonlocally Connected Networks
非局部连接网络的时空动态
  • 批准号:
    1951099
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Modeling the Interactions of Stimuli and Ongoing Activity in Cortical Networks
模拟皮质网络中刺激和持续活动的相互作用
  • 批准号:
    1712922
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interactions between Stimuli and Spatiotemporal Activity
刺激与时空活动之间的相互作用
  • 批准号:
    1219753
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Noise, Waves and Synchrony
噪声、波浪和同步
  • 批准号:
    0817131
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Differential and Integral Equations in Neurobiology
神经生物学中的微分方程和积分方程
  • 批准号:
    0209942
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Differential and Integral Equations in Physiology and Cell Biology
生理学和细胞生物学中的微分方程和积分方程
  • 批准号:
    9972913
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonlinear Differential Equations & Linear Equations in Physiology & Cell Biology.
非线性微分方程
  • 批准号:
    9626728
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Differential and Integral Equations in Physiology
数学科学:生理学中的非线性微分方程和积分方程
  • 批准号:
    9303706
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spatial and Temporal Nonlinear Integral and Differential Equations
数学科学:时空非线性积分和微分方程
  • 批准号:
    9002028
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spatial and Temporal Patterns in Non-Linear Differential Equations
数学科学:非线性微分方程中的空间和时间模式
  • 批准号:
    8701405
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

用CLEAN和直接解调方法分析INTEGRAL数据
  • 批准号:
    10603004
  • 批准年份:
    2006
  • 资助金额:
    35.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fast Galerkin Methods for Boundary Integral Reformulations of Time Dependent Partial Differential Equations
时相关偏微分方程边界积分重构的快速伽辽金方法
  • 批准号:
    1720431
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
H²-matrix preconditioners for integral and elliptic partial differential equations
积分和椭圆偏微分方程的 H² 矩阵预条件子
  • 批准号:
    229645647
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integral structures of arithmetic differential equations and geometries behind them
算术微分方程的积分结构及其背后的几何
  • 批准号:
    24654002
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Accurateness and stability of delayed integral and differential equations and their discrete versions.
延迟积分和微分方程及其离散形式的准确性和稳定性。
  • 批准号:
    21540230
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Fast Direct Solvers for Differential and Integral Equations
职业:微分方程和积分方程的快速直接求解器
  • 批准号:
    0748488
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Accuracy and stability for delayed integral and differential equations and their discrete equations
延迟积分和微分方程及其离散方程的精度和稳定性
  • 批准号:
    19540229
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytical and Geometrical Study of Integral Representations of Differential Equations
微分方程积分表示的解析和几何研究
  • 批准号:
    17340049
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Accuracy and atability for delayed integral and differential equations and their discrete equations
时滞积分微分方程及其离散方程的准确度和稳定性
  • 批准号:
    16540207
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative Properties of Nonlinear Differential and Integral Equations or Systems
非线性微分和积分方程或系统的定性性质
  • 批准号:
    0401174
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Numerical solution of ordinary differential and integral equations
常微分方程和积分方程的数值解
  • 批准号:
    8147-1999
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了