Analysis and Applications of Nonlinear Partial Differential Equations in Conservation Laws

守恒定律中非线性偏微分方程的分析与应用

基本信息

  • 批准号:
    0604362
  • 负责人:
  • 金额:
    $ 11.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

The research program is for the study of multi-dimensional conservation laws arising in fluid dynamics and magnetohydrodynamics. In particular, the investigator studies some nonlinear problems on the multi-dimensional Euler equations for inviscid compressible flow, the magnetohydrodynamics (MHD) equations for viscous compressible flow in an electromagnetic field, and related applications. The objectives of this research are (1) to develop analytic techniques and numerical schemes to construct global solutions of the multi-dimensional Euler equations with certain symmetries and study the qualitative behavior of the solution near the origin; (2) to construct some special two-dimensional global solutions of Euler equations, obtain global structure of solutions, and study evolution of discontinuities and stability; (3) to explore the wave interactions and construct two-dimensional Riemann solutions of the pressure gradient system and the Euler equations; and (4) to study the formation of singularity, long-time behavior, global existence, and stability of solutions to both the one-dimensional and multi-dimensional problems of the viscous MHD equations when initial data are large. New ideas and techniques need to be developed to solve these problems. The study will provide deep insight into the structure and qualitative behavior of solutions, and will shed light on the general multi-dimensional problems for the compressible Euler and MHD equations.The project is devoted to a mathematical study of some nonlinear partial differential equations governing the motion of compressible fluid flows and related applications. Compressible fluids occur all around us in nature, e.g. gases and plasmas, whose study is crucial to understanding aerodyanmics, environmental science, astrophysics, and plasma physics, etc. While the one-dimensional Euler equations for inviscid compressible fluid flow are rather well understood, the general theory for the multi-dimensional case is comparatively mathematically underdeveloped. The mathematical theory of magnetohydrodynamic equations for viscous compressible conducting fluid flow in an electromagnetic field in any space dimensions is even less developed. The purpose of this research program is to investigate some important problems to advance the mathematical understanding of the multi-dimensional compressible fluid flows and magnetohydrodynamics. Success in this project will advance knowledge of this fundamental area of mathematics and mechanics, and will provide education and training to students on the outstanding problems in the field.
本研究计划是研究流体力学和磁流体力学中出现的多维守恒定律。重点研究了无粘可压缩流动的多维欧拉方程、电磁场中粘性可压缩流动的磁流体力学方程及其相关应用。本研究的目标是:(1)发展具有一定对称性的多维欧拉方程全局解的解析技术和数值格式,并研究解在原点附近的定性行为;(2)构造Euler方程的二维特殊整体解,得到解的整体结构,研究不连续结构的演化和稳定性;(3)探索波浪相互作用,构建压力梯度系统的二维Riemann解和欧拉方程;(4)研究初始数据大时粘性MHD方程一维和多维问题解的奇点形成、长时间行为、全局存在性和稳定性。要解决这些问题,需要发展新的思想和技术。该研究将深入了解解的结构和定性行为,并将为可压缩欧拉方程和MHD方程的一般多维问题提供启示。该项目致力于对控制可压缩流体运动的非线性偏微分方程及其相关应用进行数学研究。可压缩流体在自然界中无处不在,如气体、等离子体等,对其研究对于理解空气动力学、环境科学、天体物理学、等离子体物理学等至关重要。虽然一维无粘可压缩流体流动的欧拉方程已经被很好地理解,但多维情况下的一般理论在数学上相对欠发达。粘性可压缩导电流体在任何空间尺度的电磁场中流动的磁流体动力学方程的数学理论更是不发达。本研究计划的目的是探讨一些重要的问题,以促进对多维可压缩流体流动和磁流体力学的数学理解。这个项目的成功将推进数学和力学这一基础领域的知识,并将为学生提供有关该领域突出问题的教育和培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dehua Wang其他文献

Equation of state of water based on the SCAN meta-GGA density functional
基于 SCAN meta-GGA 密度泛函的水状态方程
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gang Zhao;Shuyi Sh;Huijuan Xie;Qiushuang Xu;Mingcui Ding;Xuguang Zhao;Jinliang Yan;Dehua Wang
  • 通讯作者:
    Dehua Wang
Interference in the Photodetachment of a Negative Ion near Two Perpendicular Elastic Surfaces
两个垂直弹性表面附近负离子光脱离的干涉
  • DOI:
    10.6122/cjp.20140901c
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Dehua Wang
  • 通讯作者:
    Dehua Wang
Photodetachment dynamics in a time-dependent oscillating electric field
随时间变化的振荡电场中的光脱离动力学
  • DOI:
    10.1140/epjd/e2017-70432-4
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dehua Wang;Qinfeng Xu;Jie Du
  • 通讯作者:
    Jie Du
Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field
静电场中振荡电场对H-离子光脱离的影响
Simulation of the gravitational wave frequency distribution of neutron star–black hole mergers
中子星—黑洞并合引力波频率分布模拟
  • DOI:
    10.1088/1674-1056/abff28
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianwei Zhang;Chengmin Zhang;Di Li;Xianghan Cui;Wuming Yang;Dehua Wang;Yiyan Yang;Shaolan Bi;Xianfei Zhang
  • 通讯作者:
    Xianfei Zhang

Dehua Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dehua Wang', 18)}}的其他基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
  • 批准号:
    1907519
  • 财政年份:
    2019
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
  • 批准号:
    1613213
  • 财政年份:
    2016
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
Free Boundary Problems and Applications, Spring 2014
免费边界问题和应用,2014 年春季
  • 批准号:
    1445629
  • 财政年份:
    2015
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
  • 批准号:
    1312800
  • 财政年份:
    2013
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
  • 批准号:
    0906160
  • 财政年份:
    2009
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
  • 批准号:
    0244487
  • 财政年份:
    2003
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
Analysis and applications of nonlinear problems with lack of compactness
缺乏紧性的非线性问题的分析与应用
  • 批准号:
    RGPIN-2022-04213
  • 财政年份:
    2022
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2022-05067
  • 财政年份:
    2022
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Discovery Grants Program - Individual
DMS-EPSRC: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    EP/V051121/1
  • 财政年份:
    2022
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Research Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219391
  • 财政年份:
    2022
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219397
  • 财政年份:
    2022
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219434
  • 财政年份:
    2022
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
Analysis of stochastic chaos in nonlinear stochastic differential equations and its applications
非线性随机微分方程中的随机混沌分析及其应用
  • 批准号:
    21H01002
  • 财政年份:
    2021
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2021
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2020
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了