Free Boundary Problems and Applications, Spring 2014
免费边界问题和应用,2014 年春季
基本信息
- 批准号:1445629
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the conference "Free Boundary Problems and Applications," held at the University of Pittsburgh on March 11-14, 2015. Free boundaries in mathematical models (interfaces, moving boundaries, shocks, and so on) arise in a wide range of applications in various sciences and real world problems, including gas dynamics, material sciences, geometry, complex fluids, water waves, phase transitions, mathematical finance, mathematical biology, and medicine. The breadth of the free boundary problems presents challenges and opportunities, and also leads to the development of research in different directions with unifying themes regarding methods and techniques. The aim of the conference is to bring together leading experts in various theoretical and applied aspects of free boundary problems to promote and enhance those unifying techniques, in particular, to exchange and explore ideas, to establish new connections, to foster new collaborations, and to provide training for students and junior researchers. Leading experts will speak in the conference. The program of the conference will be structured to foster integration of research and education, and to broaden opportunities and enable the participation of members of groups underrepresented in the mathematical sciences.The theory of free boundary problems has become an important aspect of nonlinear partial differential equations. Modern approaches to the theory of nonlinear partial differential equations have brought various new insights and new methods to understand the free boundary problems. New important and challenging problems have been emerging in physics, engineering, industry, material sciences, finance, biology and medicine, and other fields. The conference provides an opportunity for experts in analysis and applications to present their research results, discuss mathematical theory and techniques critical for many research fields and applications, explore new important and challenging problems emerging in various applications, establish new connections, and potentially foster new collaborations among the participants. The conference also provides an opportunity for students and junior researchers, including those from the groups underrepresented in mathematical sciences (women, minorities) to be educated in the research field and to present their recent research results. The conference will disseminate research results and promote the research area through talks, a web page, flyers, and posters.Conference web site: www.math.pitt.edu/~dwang/conference2015.html
该奖项支持参加2015年3月11日至14日在匹兹堡大学举行的“自由边界问题和应用”会议。数学模型中的自由边界(界面、移动边界、冲击等)在各种科学和真实的世界问题中有着广泛的应用,包括气体动力学、材料科学、几何学、复杂流体、水波、相变、数学金融学、数学生物学和医学。自由边界问题的广度带来了挑战和机遇,也导致了研究在不同方向上的发展,统一了方法和技术方面的主题。会议的目的是汇集自由边界问题的各种理论和应用方面的领先专家,以促进和加强这些统一的技术,特别是交流和探索思想,建立新的联系,促进新的合作,并为学生和初级研究人员提供培训。主要专家将在会议上发言。会议的议程将促进研究和教育的一体化,并扩大机会,使在数学科学中代表性不足的群体的成员能够参与。自由边界问题的理论已成为非线性偏微分方程的一个重要方面。现代非线性偏微分方程理论的发展为理解自由边界问题带来了许多新的见解和新的方法。在物理、工程、工业、材料科学、金融、生物和医学等领域都出现了新的重要和具有挑战性的问题。该会议为分析和应用专家提供了一个机会,展示他们的研究成果,讨论对许多研究领域和应用至关重要的数学理论和技术,探索各种应用中出现的新的重要和具有挑战性的问题,建立新的联系,并可能促进参与者之间的新合作。会议还为学生和初级研究人员提供了一个机会,包括那些来自数学科学代表性不足的群体(妇女,少数民族)的学生和初级研究人员在研究领域接受教育,并介绍他们最近的研究成果。会议将通过讲座、网页、传单和海报传播研究成果并促进研究领域。会议网址:www.math.pitt.edu/~dwang/conference2015.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dehua Wang其他文献
Equation of state of water based on the SCAN meta-GGA density functional
基于 SCAN meta-GGA 密度泛函的水状态方程
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Gang Zhao;Shuyi Sh;Huijuan Xie;Qiushuang Xu;Mingcui Ding;Xuguang Zhao;Jinliang Yan;Dehua Wang - 通讯作者:
Dehua Wang
Interference in the Photodetachment of a Negative Ion near Two Perpendicular Elastic Surfaces
两个垂直弹性表面附近负离子光脱离的干涉
- DOI:
10.6122/cjp.20140901c - 发表时间:
2015-02 - 期刊:
- 影响因子:5
- 作者:
Dehua Wang - 通讯作者:
Dehua Wang
Photodetachment dynamics in a time-dependent oscillating electric field
随时间变化的振荡电场中的光脱离动力学
- DOI:
10.1140/epjd/e2017-70432-4 - 发表时间:
2017-03 - 期刊:
- 影响因子:0
- 作者:
Dehua Wang;Qinfeng Xu;Jie Du - 通讯作者:
Jie Du
Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field
静电场中振荡电场对H-离子光脱离的影响
- DOI:
10.1016/j.elspec.2016.12.003 - 发表时间:
2017 - 期刊:
- 影响因子:1.9
- 作者:
Dehua Wang - 通讯作者:
Dehua Wang
Simulation of the gravitational wave frequency distribution of neutron star–black hole mergers
中子星—黑洞并合引力波频率分布模拟
- DOI:
10.1088/1674-1056/abff28 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jianwei Zhang;Chengmin Zhang;Di Li;Xianghan Cui;Wuming Yang;Dehua Wang;Yiyan Yang;Shaolan Bi;Xianfei Zhang - 通讯作者:
Xianfei Zhang
Dehua Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dehua Wang', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
- 批准号:
1907519 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
- 批准号:
1613213 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
- 批准号:
1312800 - 财政年份:2013
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
- 批准号:
0906160 - 财政年份:2009
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Analysis and Applications of Nonlinear Partial Differential Equations in Conservation Laws
守恒定律中非线性偏微分方程的分析与应用
- 批准号:
0604362 - 财政年份:2006
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244487 - 财政年份:2003
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
- 批准号:
2247096 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
- 批准号:
2307342 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Dynamical analysis of foliated structure in free boundary problems
自由边界问题中叶状结构的动力学分析
- 批准号:
22KK0230 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Probabilistic Approach to Singular Free Boundary Problems and Applications
奇异自由边界问题的概率方法及其应用
- 批准号:
2108680 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant