Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
基本信息
- 批准号:1312800
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to a mathematical study of some nonlinear partial differential equations in multi-dimensional conservation laws and related applications. In particular, the study focuses on the following topics from the theory of inviscid and viscous compressible flows and related applications: (a) Mixed-type PDE problems for transonic flows past an obstacle. (b) Mixed-type PDE problems for isometric embedding. (c) Existence and regularity of global solutions to the compressible multi-dimensional Navier-Stokes equations. (d) Global solutions to the viscous flows of related applications in liquid crystals. The goals of the research are: (a) To develop novel analytic methods and efficient techniques for solving some important problems in multi-dimensional inviscid and viscous conservation laws and applications. (b) To explore the qualitative behavior of flow motion. (c) To establish new connections of the isometric embedding problem with elastodynamics. (d) To gain insights into other multi-dimensional problems of conservation laws and emerging applications.The aim of this research program is to develop new methods of analysis and techniques for studying some nonlinear partial differential equations governing the motion of compressible fluid flows and related applications. Compressible fluids such as gases are important in nature. Their study is crucial for understanding aerodynamics, atmospheric science, astrophysics, plasma physics, biology, elastodynamics, etc. While the one-dimensional problems are rather well understood, the general theory for the multi-dimensional case is mathematically underdeveloped. The project will advance the mathematical understanding of the multi-dimensional equations of compressible flows and related problems in emerging applications, and will provide education and training to students in this important field.
该项目致力于多维守恒律中一些非线性偏微分方程及其相关应用的数学研究。特别是,研究的重点是从无粘和粘性可压缩流理论和相关应用的以下主题:(a)混合型PDE跨音速绕流的障碍问题。(b)等距嵌入的混合型偏微分方程问题。(c)可压缩多维Navier-Stokes方程整体解的存在性和正则性。(d)液晶中相关应用粘性流的整体解。研究的目标是:(a)发展新的分析方法和有效的技术,以解决多维无粘和粘性守恒定律和应用中的一些重要问题。(b)探索流动的定性行为。(c)建立等距嵌入问题与弹性动力学的新联系。(d)深入了解其他多维守恒定律问题和新兴应用。本研究计划的目的是发展新的分析方法和技术,用于研究控制可压缩流体流动运动的非线性偏微分方程及其相关应用。 可压缩流体,如气体,在自然界中是重要的。他们的研究对于理解空气动力学、大气科学、天体物理学、等离子体物理学、生物学、弹性动力学等是至关重要的。虽然一维问题已经相当好地理解了,但多维情况下的一般理论在数学上还不发达。该项目将促进对可压缩流的多维方程和新兴应用中的相关问题的数学理解,并将为这一重要领域的学生提供教育和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dehua Wang其他文献
Interference in the Photodetachment of a Negative Ion near Two Perpendicular Elastic Surfaces
两个垂直弹性表面附近负离子光脱离的干涉
- DOI:
10.6122/cjp.20140901c - 发表时间:
2015-02 - 期刊:
- 影响因子:5
- 作者:
Dehua Wang - 通讯作者:
Dehua Wang
Ab initio
investigation of the first-order liquid-liquid phase transition in molten sulfur
熔融硫中一级液-液相变的从头算研究
- DOI:
10.1103/physrevb.109.014209 - 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Ziqing Yang;Jiaxin Xu;Gang Zhao;Dehua Wang - 通讯作者:
Dehua Wang
Simulation of the gravitational wave frequency distribution of neutron star–black hole mergers
中子星—黑洞并合引力波频率分布模拟
- DOI:
10.1088/1674-1056/abff28 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jianwei Zhang;Chengmin Zhang;Di Li;Xianghan Cui;Wuming Yang;Dehua Wang;Yiyan Yang;Shaolan Bi;Xianfei Zhang - 通讯作者:
Xianfei Zhang
Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field
静电场中振荡电场对H-离子光脱离的影响
- DOI:
10.1016/j.elspec.2016.12.003 - 发表时间:
2017 - 期刊:
- 影响因子:1.9
- 作者:
Dehua Wang - 通讯作者:
Dehua Wang
Study of the escape of particle from an open quarter-circular microcavity
开放式四分之一圆微腔中粒子逃逸的研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sheng Liu;Dehua Wang - 通讯作者:
Dehua Wang
Dehua Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dehua Wang', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
- 批准号:
1907519 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
- 批准号:
1613213 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Free Boundary Problems and Applications, Spring 2014
免费边界问题和应用,2014 年春季
- 批准号:
1445629 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
- 批准号:
0906160 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Analysis and Applications of Nonlinear Partial Differential Equations in Conservation Laws
守恒定律中非线性偏微分方程的分析与应用
- 批准号:
0604362 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244487 - 财政年份:2003
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant