Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
基本信息
- 批准号:0906160
- 负责人:
- 金额:$ 15.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to the study of multi-dimensional conservation laws arising in fluid dynamics and related applications. In particular, the study focuses on the following topics from the theory of two-dimensional compressible isentropic Euler equations and related partial differential equations: (a) the steady and unsteady transonic flows past an obstacle, (b) a fluid dynamic approach for the Gauss-Codazzi equations of isometric embedding/immersion, (c) two-dimensional solutions with special data of the Euler equations, and (d) the two-dimensional problems arising in magnetohydrodynamics, elastodynamics, and radiation hydrodynamics. The goals of the research are: (a) developing novel analytic methods and numerical schemes to construct multi-dimensional solutions, (b) exploring global structure of solutions, (c) understanding long-time behavior, for example, evolution of singularities and stability, and (d) gaining insights into the multi-dimensional problems, in particular identifying the functional spaces of multi-dimensional solutions.The project is devoted to a mathematical study of some nonlinear partial differential equations governing the motion of compressible fluid flows and related applications. Compressible fluids are ubiquitous in nature, the most common examples being gases. Their study is crucial for understanding aerodynamics, atmospheric science, astrophysics, plasma physics, etc. While the one-dimensional problems are rather well understood, the general theory for the multi-dimensional case is mathematically underdeveloped. The project is to advance the mathematical understanding of the multi-dimensional equations of compressible flows. The aim of the project is to advance knowledge in this fundamental area of mathematics and mechanics, and to provide education and training to students in this important field.
该项目致力于研究流体动力学中的多维守恒定律及其相关应用。特别是,从二维可压缩等熵欧拉方程及相关偏微分方程的理论出发,重点研究了以下课题:(a)定常和非定常跨音速绕流,(B)等距嵌入/浸入Gauss-Codazzi方程的流体动力学方法,(c)Euler方程的特殊数据二维解,(d)磁流体力学、弹性力学和辐射流体力学中的二维问题。研究的目标是:(a)发展新的分析方法和数值方案来构造多维解,(B)探索解的全局结构,(c)理解长期行为,例如奇异性和稳定性的演化,以及(d)获得对多维问题的见解,特别是识别多个功能空间,该项目致力于可压缩流体流动运动的一些非线性偏微分方程的数学研究,应用.可压缩流体在自然界中无处不在,最常见的例子是气体。他们的研究是至关重要的了解空气动力学,大气科学,天体物理学,等离子体物理学等,而一维的问题是相当好的理解,一般理论的多维情况下数学欠发达。该项目旨在提高对可压缩流的多维方程的数学理解。该项目的目的是推进数学和力学这一基本领域的知识,并为这一重要领域的学生提供教育和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dehua Wang其他文献
Equation of state of water based on the SCAN meta-GGA density functional
基于 SCAN meta-GGA 密度泛函的水状态方程
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Gang Zhao;Shuyi Sh;Huijuan Xie;Qiushuang Xu;Mingcui Ding;Xuguang Zhao;Jinliang Yan;Dehua Wang - 通讯作者:
Dehua Wang
Interference in the Photodetachment of a Negative Ion near Two Perpendicular Elastic Surfaces
两个垂直弹性表面附近负离子光脱离的干涉
- DOI:
10.6122/cjp.20140901c - 发表时间:
2015-02 - 期刊:
- 影响因子:5
- 作者:
Dehua Wang - 通讯作者:
Dehua Wang
Photodetachment dynamics in a time-dependent oscillating electric field
随时间变化的振荡电场中的光脱离动力学
- DOI:
10.1140/epjd/e2017-70432-4 - 发表时间:
2017-03 - 期刊:
- 影响因子:0
- 作者:
Dehua Wang;Qinfeng Xu;Jie Du - 通讯作者:
Jie Du
Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field
静电场中振荡电场对H-离子光脱离的影响
- DOI:
10.1016/j.elspec.2016.12.003 - 发表时间:
2017 - 期刊:
- 影响因子:1.9
- 作者:
Dehua Wang - 通讯作者:
Dehua Wang
Simulation of the gravitational wave frequency distribution of neutron star–black hole mergers
中子星—黑洞并合引力波频率分布模拟
- DOI:
10.1088/1674-1056/abff28 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jianwei Zhang;Chengmin Zhang;Di Li;Xianghan Cui;Wuming Yang;Dehua Wang;Yiyan Yang;Shaolan Bi;Xianfei Zhang - 通讯作者:
Xianfei Zhang
Dehua Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dehua Wang', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
- 批准号:
1907519 - 财政年份:2019
- 资助金额:
$ 15.49万 - 项目类别:
Continuing Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
- 批准号:
1613213 - 财政年份:2016
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Free Boundary Problems and Applications, Spring 2014
免费边界问题和应用,2014 年春季
- 批准号:
1445629 - 财政年份:2015
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
- 批准号:
1312800 - 财政年份:2013
- 资助金额:
$ 15.49万 - 项目类别:
Continuing Grant
Analysis and Applications of Nonlinear Partial Differential Equations in Conservation Laws
守恒定律中非线性偏微分方程的分析与应用
- 批准号:
0604362 - 财政年份:2006
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244487 - 财政年份:2003
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
相似海外基金
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 15.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
- 批准号:
22K13939 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
DMS-EPSRC: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
EP/V051121/1 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Research Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219391 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219397 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219434 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
- 批准号:
2055130 - 财政年份:2021
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant