Hyperbolic Conservation Laws and Applications

双曲守恒定律及其应用

基本信息

  • 批准号:
    1613213
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The aim of this research program is to develop new methods of mathematical analysis and techniques for studying some nonlinear partial differential equations governing the motion of compressible flows and related applications. Compressible fluids such as gases are ubiquitous in nature. Understanding of dynamics of compressible fluids is a crucial ingredient to prediction and control of important physical processes arising in aerodynamics, atmospheric science, astrophysics, plasma physics, biology and medicine, material science, and others. While the highly idealized one-dimensional problems are rather well understood, the general theory for the real-life multi-dimensional case is mathematically underdeveloped. The project will advance the mathematical understanding of the multi-dimensional equations of compressible flows and related problems in emerging applications. The research program will advance knowledge of the fundamental areas of mathematics and mechanics as well as applications. Graduate students will be involved in this research and trained on the outstanding problems in the related research fields.This project is devoted to a mathematical study of some nonlinear partial differential equations in multi-dimensional conservation laws and related applications. In particular, the study focuses on the following topics from the theory of inviscid and viscous compressible flows and related applications:(a) the existence and stability of vortex sheets in multi-dimensional compressible elastodynamics,(b) the global smooth isometric embedding of surfaces of negative curvature,(c) the stochastic partial differential equations of compressible flows, and(d) the active liquid crystal systems in biology/biophysics. The goal of the research is to develop novel analytic methods and efficient techniques for solving some important problems in multi-dimensional inviscid and viscous conservation laws and applications, to explore new phenomena of the motion of compressible flows, and to gain insights into the general multi-dimensional problems and emerging real-world applications.
本研究计划的目的是发展新的数学分析方法和技术,用于研究一些控制可压缩流运动的非线性偏微分方程及其相关应用。 可压缩流体,如气体,在自然界中无处不在。对可压缩流体动力学的理解是预测和控制空气动力学、大气科学、天体物理学、等离子体物理学、生物学和医学、材料科学等领域中出现的重要物理过程的关键因素。虽然高度理想化的一维问题是相当好的理解,为现实生活中的多维情况下的一般理论是数学欠发达。该项目将推进可压缩流的多维方程和新兴应用中的相关问题的数学理解。该研究计划将推进数学和力学以及应用的基本领域的知识。研究生将参与本研究,并就相关研究领域的突出问题进行培训。本项目致力于多维守恒律中某些非线性偏微分方程的数学研究及其相关应用。特别是,该研究侧重于从无粘和粘性可压缩流理论和相关应用的以下主题:(a)在多维可压缩弹性动力学涡面的存在性和稳定性,(B)的整体光滑等距嵌入的表面的负曲率,(c)可压缩流的随机偏微分方程,和(d)在生物/生物物理学的主动液晶系统。该研究的目标是开发新的分析方法和有效的技术来解决多维无粘和粘性守恒定律和应用中的一些重要问题,探索可压缩流运动的新现象,并深入了解一般的多维问题和新兴的现实世界的应用。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linear stability of compressible vortex sheets in 2D elastodynamics: variable coefficients
  • DOI:
    10.1007/s00208-018-01798-w
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    R. Chen;Jilong Hu;Dehua Wang
  • 通讯作者:
    R. Chen;Jilong Hu;Dehua Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dehua Wang其他文献

Equation of state of water based on the SCAN meta-GGA density functional
基于 SCAN meta-GGA 密度泛函的水状态方程
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gang Zhao;Shuyi Sh;Huijuan Xie;Qiushuang Xu;Mingcui Ding;Xuguang Zhao;Jinliang Yan;Dehua Wang
  • 通讯作者:
    Dehua Wang
Interference in the Photodetachment of a Negative Ion near Two Perpendicular Elastic Surfaces
两个垂直弹性表面附近负离子光脱离的干涉
  • DOI:
    10.6122/cjp.20140901c
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Dehua Wang
  • 通讯作者:
    Dehua Wang
Photodetachment dynamics in a time-dependent oscillating electric field
随时间变化的振荡电场中的光脱离动力学
  • DOI:
    10.1140/epjd/e2017-70432-4
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dehua Wang;Qinfeng Xu;Jie Du
  • 通讯作者:
    Jie Du
Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field
静电场中振荡电场对H-离子光脱离的影响
Simulation of the gravitational wave frequency distribution of neutron star–black hole mergers
中子星—黑洞并合引力波频率分布模拟
  • DOI:
    10.1088/1674-1056/abff28
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianwei Zhang;Chengmin Zhang;Di Li;Xianghan Cui;Wuming Yang;Dehua Wang;Yiyan Yang;Shaolan Bi;Xianfei Zhang
  • 通讯作者:
    Xianfei Zhang

Dehua Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dehua Wang', 18)}}的其他基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations in Conservation Laws and Applications
守恒定律中的非线性偏微分方程及其应用
  • 批准号:
    1907519
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Free Boundary Problems and Applications, Spring 2014
免费边界问题和应用,2014 年春季
  • 批准号:
    1445629
  • 财政年份:
    2015
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Partial Differential Equations in Conservation Laws and Applications
守恒定律中的偏微分方程及其应用
  • 批准号:
    1312800
  • 财政年份:
    2013
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Analysis of Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的分析及相关应用
  • 批准号:
    0906160
  • 财政年份:
    2009
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Analysis and Applications of Nonlinear Partial Differential Equations in Conservation Laws
守恒定律中非线性偏微分方程的分析与应用
  • 批准号:
    0604362
  • 财政年份:
    2006
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
  • 批准号:
    0244487
  • 财政年份:
    2003
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似海外基金

Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Stability Theory for Systems of Hyperbolic Conservation Laws
双曲守恒定律系统的稳定性理论
  • 批准号:
    2306852
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Efficient Neural Network Based Numerical Schemes for Hyperbolic Conservation Laws
基于高效神经网络的双曲守恒定律数值方案
  • 批准号:
    2208518
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
  • 批准号:
    20H00118
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Large solutions for systems of hyperbolic conservation laws and wave equations in one and multiple space dimensions
一维和多维空间双曲守恒定律和波动方程组的大解
  • 批准号:
    2008504
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Theory and Solution Methods for Generalized Nash Equilibrium Problems Governed by Networks of Nonlinear Hyperbolic Conservation Laws
非线性双曲守恒律网络治理的广义纳什均衡问题的理论与求解方法
  • 批准号:
    423771718
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Priority Programmes
Shock capturing and numerical dissipation in high-order methods for hyperbolic conservation laws
双曲守恒定律高阶方法中的冲击捕获和数值耗散
  • 批准号:
    405315368
  • 财政年份:
    2018
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Research Grants
Systems of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程组
  • 批准号:
    1715012
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
CAREER: High Order Structure-Preserving Numerical Methods for Hyperbolic Conservation Laws
职业:双曲守恒定律的高阶结构保持数值方法
  • 批准号:
    1753581
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Efficient hp-adaptive algorithms for the discontinuous Galerkin method for nonlinear hyperbolic conservation laws on graphics processing units (GPU)
用于图形处理单元 (GPU) 上非线性双曲守恒定律的不连续伽辽金方法的高效 HP 自适应算法
  • 批准号:
    475025-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了