Control of Micro/Nano Bio-mimetic Structures for Fluidic Devices
流体装置微/纳米仿生结构的控制
基本信息
- 批准号:0624597
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed work will study the optimal (minimal-energy) control of micro/nano bio-mimetic cilia for bio-fluidic devices. The goal is to achieve bio-compatible transport of small amounts of fluids without the need for cumbersome actuators such as external pumps used for fluid transport in current devices thereby, enable device portability. The novelty of the proposed work is that it will achieve this bio-compatible fluid transport by mimicking biological systems; in particular, the proposed design will use micro/nano-scale bio-mimetic cilia (similar to hair-like structures used in biological systems) for fluid transport. The key idea is to asymmetrically excite the bio-mimetic cilia array at frequencies close to vibrational resonance of the cilia. The asymmetry of the vibrations produces net fluid flow; and the closeness of the excitation frequency to the resonance frequency of the cilia array enables relatively large movements of the bio-mimetic cilia. The main control issue is to maximize the fluid flow with minimal input energy for device portability. The optimization of the distributed fluid-structure interactions arising from cilia array will use envelope-based flow prediction and sub-layer methods, along with nonlinear structural vibration modeling for: (a) modeling the nonlinear cilia dynamics; (b) quantifying the flow produced by the cilia array; and (c) optimizing the control input to maximize the resulting flow. To obtain the optimal control input, the proposed work will solve the simultaneous optimization of trajectory tracking and output transitions for maximizing the flow generated by the cilia while minimizing the input energy. The research will also investigate convergence of iterative algorithms proposed to solve this nonlinear optimization problem. In this sense, the proposed research will advance the state-of-the-art in optimal control of nonlinear systems. In addition to the theoretical effort, the control techniques will be implemented and evaluated experimentally; thus, the research will lay the groundwork for enabling such bio-mimetic cilia for fluidic devices.This research will enable the bio-compatible transport of small amounts of fluid samples in emerging applications such as disposable biofluidic chips. The goal is to enhance the portability of bio-devices by removing the need for cumbersome actuators such as external pumps used for fluid transport in current bio-fluidic devices. The proposed design will use micro/nano-scale bio-mimetic cilia for fluid transport. Biological cilia are hair-like structures whose rhythmic beating: (a) provides motility for cells and micro-organisms; and (b) moves fluids and particles in biological ducts. For example, cilia are used in the human body to sweep: (i) mucous in the respiratory system, and (ii) eggs toward the uterus. The proposed device will use vibration/acoustic to indirectly excite the bio-mimetic cilia, which will lead to a biocompatible actuation mechanism since it avoids damage of biosamples during fluid transport. Moreover, the relatively easy coupling between a piezo-actuator (to generate the vibration/acoustics) and the cilia will enable convenient fluid transport through remote actuation for disposable biofluidic chips. The outcome of this proposal will be a biomimetic device that will enable applications which need to: (a) control the diffusion rate of chemical reactions, (b) efficiently mix several different bio/chemical species, or (c) transport liquid in a controllable way. The proposed work will offer research and educational experience to undergraduate students and promote the involvement of minority students in research. Thus, it will help to build the research and human resource infrastructure needed in emerging biotechnology areas; this effort is in keeping with a recent NSF sponsored workshop finding that Mechanical Engineering Departments "should aggressively integrate biology and life sciences into the curriculum."
拟议的工作将研究生物流体设备的微/纳米仿生纤毛的最佳(最小能量)控制。 目标是实现少量流体的生物相容性输送,而不需要笨重的致动器,例如用于当前装置中的流体输送的外部泵,从而实现装置的便携性。拟议工作的新奇在于,它将通过模仿生物系统来实现这种生物相容的流体输送;特别是,拟议的设计将使用微/纳米级生物模拟纤毛(类似于生物系统中使用的毛发状结构)进行流体输送。 关键想法是以接近纤毛振动共振的频率不对称地激发仿生纤毛阵列。振动的不对称性产生净流体流动;并且激励频率与纤毛阵列的共振频率的接近使得仿生纤毛能够进行相对大的运动。主要的控制问题是以最小的输入能量使流体流量最大化,以实现装置的便携性。由纤毛阵列引起的分布式流体-结构相互作用的优化将使用基于微扰的流动预测和子层方法,沿着非线性结构振动建模,用于:(a)对非线性纤毛动力学建模;(B)量化由纤毛阵列产生的流动;以及(c)优化控制输入以使所得流动最大化。为了获得最佳控制输入,所提出的工作将解决轨迹跟踪和输出转换的同时优化,以最大化纤毛产生的流量,同时最小化输入能量。本研究亦将探讨此非线性最佳化问题之迭代演算法之收敛性。从这个意义上说,所提出的研究将推进非线性系统的最优控制的最新技术。除了理论上的努力,控制技术将实施和实验评估;因此,该研究将奠定基础,使这种仿生纤毛的流体设备。这项研究将使生物相容性运输的少量流体样品的新兴应用,如一次性生物流体芯片。目标是通过消除对笨重的致动器(诸如用于当前生物流体装置中的流体输送的外部泵)的需要来增强生物装置的便携性。所提出的设计将使用微/纳米级仿生纤毛进行流体输送。生物纤毛是毛发状结构,其有节奏的跳动:(a)为细胞和微生物提供运动性;(B)移动生物导管中的流体和颗粒。例如,纤毛在人体中用于清扫:(i)呼吸系统中的粘液,以及(ii)朝向子宫的卵。 所提出的装置将使用振动/声学来间接地激发仿生纤毛,这将导致生物相容性致动机制,因为它避免了流体输送期间生物样品的损坏。此外,压电致动器(以产生振动/声学)与纤毛之间的相对容易的耦合将使得能够通过用于一次性生物流体芯片的远程致动来方便地进行流体输送。该提议的结果将是一种仿生装置,该仿生装置将使需要以下的应用成为可能:(a)控制化学反应的扩散速率,(B)有效地混合几种不同的生物/化学物质,或(c)以可控的方式输送液体。拟议的工作将为本科生提供研究和教育经验,并促进少数民族学生参与研究。因此,它将有助于建立新兴生物技术领域所需的研究和人力资源基础设施;这一努力与NSF最近赞助的研讨会发现,机械工程系“应积极将生物学和生命科学纳入课程。"
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Santosh Devasia其他文献
Active Anomaly Detection in Confined Spaces Using Ergodic Traversal of Directed Region Graphs
使用有向区域图的遍历遍历有限空间中的主动异常检测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Benjamin Wong;Tyler M. Paine;Santosh Devasia;A. Banerjee - 通讯作者:
A. Banerjee
Delayed Self-Reinforcement to Reduce Deformation During Decentralized Flexible-Object Transport
延迟自我强化以减少分散式柔性物体传输过程中的变形
- DOI:
10.1109/tro.2023.3343997 - 发表时间:
2024 - 期刊:
- 影响因子:7.8
- 作者:
Yoshua Gombo;Anuj Tiwari;Mohamed Safwat;Henry Chang;Santosh Devasia - 通讯作者:
Santosh Devasia
Guest editorial: focused section on human-centered robotics
- DOI:
10.1007/s41315-018-0058-6 - 发表时间:
2018-05-17 - 期刊:
- 影响因子:2.000
- 作者:
Santosh Devasia;Chien Chern Cheah;Marcello Pellicciari;Margherita Peruzzini - 通讯作者:
Margherita Peruzzini
Redundant actuators to achieve minimal vibration trajectory tracking of flexible multibodies: Theory and application
- DOI:
10.1007/bf00045886 - 发表时间:
1994-12-01 - 期刊:
- 影响因子:6.000
- 作者:
Santosh Devasia;Eduardo Bayo - 通讯作者:
Eduardo Bayo
Output tracking with nonhyperbolic and near nonhyperbolic internal dynamics: helicopter hover control
- DOI:
10.1109/acc.1997.610689 - 发表时间:
1997-06 - 期刊:
- 影响因子:0
- 作者:
Santosh Devasia - 通讯作者:
Santosh Devasia
Santosh Devasia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Santosh Devasia', 18)}}的其他基金
Data-based Iterative Control using Complex-Kernel Regression for Precision SEA Robots
使用复杂核回归进行基于数据的迭代控制用于精密 SEA 机器人
- 批准号:
1824660 - 财政年份:2018
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Advanced Composites Manufacturing and Repair Using Integrated Distributed Actuation and Dynamic Network Control
使用集成分布式驱动和动态网络控制的先进复合材料制造和修复
- 批准号:
1536306 - 财政年份:2015
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Boundary Regulation: Output-Recovery Guidance for Nonminimum Phase Systems
边界调节:非最小相位系统的输出恢复指南
- 批准号:
1301452 - 财政年份:2013
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
NUE: Integrating Nanodevice Design, Fabrication, and Analysis into the Mechanical Engineering Curriculum
NUE:将纳米器件设计、制造和分析融入机械工程课程
- 批准号:
1042061 - 财政年份:2010
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Vibration Mitigation in Inchworm Nanopositioners for SPMs
SPM 的 Inchworm 纳米定位器的减振
- 批准号:
0856091 - 财政年份:2009
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Project: Integration of Modeling and Control of Smart Actuators for Nano/Bio Technology into Mechanical Engineering Curriculum
合作项目:将纳米/生物技术智能执行器的建模和控制融入机械工程课程
- 批准号:
0632913 - 财政年份:2007
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Image-Based Control of Movement-Induced Vibration During High-Speed Operation of Scanning Probe Microscopes
扫描探针显微镜高速运行期间运动引起的振动的基于图像的控制
- 批准号:
0301787 - 财政年份:2003
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Vibration-Control of Nonlinear Piezo-Dynamics During Precision Position-Tracking Maneuvers
精密位置跟踪操纵过程中非线性压电动力学的振动控制
- 批准号:
0196214 - 财政年份:2000
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Vibration-Control of Nonlinear Piezo-Dynamics During Precision Position-Tracking Maneuvers
精密位置跟踪操纵过程中非线性压电动力学的振动控制
- 批准号:
9813080 - 财政年份:1998
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
相似国自然基金
Micro-LED芯片(模组)显示材料的研发及应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Micro-LED片上集成量子点像素光波导结
构设计与制造研究
- 批准号:
- 批准年份:2025
- 资助金额:100.0 万元
- 项目类别:省市级项目
车载领域Micro-LED显示技术研发
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Micro LED晶圆级缺陷在线检测装备研发
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Micro-LED全彩化用钙钛矿纳米晶的稳定机理研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
金属氧化物TFT有源模拟PWM驱动Micro-LED显示研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基于非辐射能量传递和胶体电流体微喷印的Micro-LED红光色转换技术
- 批准号:62374142
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
Mini/Micro-LED显示器件表面功能结构冷冻磨切加工机理及光学性能研究
- 批准号:52375426
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向AR/VR应用的III族氮化物有源驱动micro-LED显示阵列
- 批准号:62375006
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效率全彩色micro-LED显示转移打印及性能研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Exploration of surface nano structures to control micro thermal flow fields in the high Knudsen number regime
探索表面纳米结构控制高努森数状态下的微热流场
- 批准号:
21K03853 - 财政年份:2021
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nano-defect super-resolution measurement of next-generation micro-functional structures using localized optical fields with dynamic phase control
使用具有动态相位控制的局部光场对下一代微功能结构进行纳米缺陷超分辨率测量
- 批准号:
19H02036 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Electrochemical pH control technology in micro/nano space and its bioapplication
微纳空间电化学pH控制技术及其生物应用
- 批准号:
19H02577 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developments of Analytical Chemistry Based on Dimension Control of Micro- and Nano-space by Freezing
基于冷冻微纳空间尺寸控制的分析化学研究进展
- 批准号:
17H01209 - 财政年份:2017
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A stabilized ozone fog to efficiently sanitize greenhouses and other difficult to clean structures, using micro / nano bubble stabilization and vaporisation control - Greenhouse Sanitisation
使用微/纳米气泡稳定和蒸发控制,稳定的臭氧雾可有效地对温室和其他难以清洁的结构进行消毒 - 温室消毒
- 批准号:
710842 - 财政年份:2016
- 资助金额:
$ 34万 - 项目类别:
GRD Proof of Concept
Polymer processing and characterization: microstructure development and control in polymer micro- and nano-processing
聚合物加工和表征:聚合物微纳米加工中的微观结构开发和控制
- 批准号:
4702-2011 - 财政年份:2015
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
Clarification of Macroscopic Motion Control Mechanism by Nano and Micro Flows in Motility System
运动系统中纳微流阐明宏观运动控制机制
- 批准号:
15K13875 - 财政年份:2015
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Polymer processing and characterization: microstructure development and control in polymer micro- and nano-processing
聚合物加工和表征:聚合物微纳米加工中的微观结构开发和控制
- 批准号:
4702-2011 - 财政年份:2014
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
Polymer processing and characterization: microstructure development and control in polymer micro- and nano-processing
聚合物加工和表征:聚合物微纳米加工中的微观结构开发和控制
- 批准号:
4702-2011 - 财政年份:2013
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
Control of the colloid agglomeration using laser irradiation and its application on the nano-micro structure fabrication
激光辐照胶体团聚控制及其在纳米微结构制备中的应用
- 批准号:
25390042 - 财政年份:2013
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)