Data-based Iterative Control using Complex-Kernel Regression for Precision SEA Robots

使用复杂核回归进行基于数据的迭代控制用于精密 SEA 机器人

基本信息

  • 批准号:
    1824660
  • 负责人:
  • 金额:
    $ 37.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This grant will support research that will contribute new knowledge related to increased automation in high-demand, low-volume manufacturing sectors, such as aerospace. In contrast to full automation, there is a need for growing-convergence research on semi-autonomous approaches for low-volume manufacturing, which exploit the combination of human adaptability and machine precision and speed, to be cost effective. Robots with series-elastic actuators (SEA) have soft joints, which enables precision control over the forces applied to the environment and are therefore, considered to be inherently safe for human-robot collaboration. This inherent safety facilitates easy adoption by workers who can directly program the robots by physical demonstrations, which in turn reduces the amount of training needed for new workers. Nevertheless, this increased control over forces comes at the cost of lower positioning precision, which limits their use in manufacturing, where precision is important. The results from this research will increase the precision of such inherently-safe robots, and enable their use by relatively-novice workers. Moreover, the use of robotic solutions for manufacturing in confined spaces, rather than a human crawling inside, can lead to thinner, lighter and more efficient aircraft wings, with lower operating costs. Thus, the work will directly impact US competitiveness in the aerospace manufacturing sector with a substantial number of high-paying jobs. This research involves the integration of control theory and advanced robotics in manufacturing. Due to substantial and growing interest in manufacturing and robotics, the efforts will help to increase participation by underrepresented groups in research, and strengthen engineering education.Relatively-soft, series elastic actuators along with low-impedance control improves control authority over the force exerted by such robots on the environment, and has the potential to enable human-robot collaboration in the manufacturing environment. Nevertheless, a central issue is that the flexural systems in such robots result in non-minimum phase dynamics and high gains (for improved precision) can lead to instability. Moreover, accurate modeling for increased precision can be challenging due to substantial friction nonlinearities, backlash, and contact-related effects in series elastic actuators robots. This research will fill the knowledge-gap on data-based iterative machine learning approaches to improve the precision of such systems. The research will use uncertainty estimates from the kernel-based learning approach to develop conditions on the size of the iteration gain for guaranteed convergence. The approach will be experimentally evaluated with a confined-space manufacturing testbed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将支持研究,这将有助于在高需求,小批量制造业,如航空航天领域增加自动化相关的新知识。与完全自动化相比,需要对小批量制造的半自主方法进行增长收敛研究,这种方法利用人类适应性与机器精度和速度的结合,以实现成本效益。具有串联弹性致动器(SEA)的机器人具有软关节,可以精确控制施加到环境的力,因此被认为是人机协作的固有安全性。这种固有的安全性便于工人通过物理演示直接对机器人进行编程,从而减少了新工人所需的培训量。 尽管如此,这种对力的控制的增强是以较低的定位精度为代价的,这限制了它们在精度很重要的制造业中的使用。这项研究的结果将提高这种固有安全机器人的精度,并使其能够被相对新手的工人使用。此外,使用机器人解决方案在密闭空间中进行制造,而不是人类在内部爬行,可以导致更薄,更轻,更高效的飞机机翼,降低运营成本。因此,这项工作将直接影响美国在航空航天制造业的竞争力,该行业拥有大量高薪工作。这项研究涉及控制理论和先进机器人技术在制造业中的整合。由于对制造业和机器人技术的兴趣越来越大,这些努力将有助于提高未被充分代表的群体在研究中的参与,并加强工程教育。相对柔软的串联弹性致动器沿着低阻抗控制,提高了对此类机器人对环境施加的力的控制权限,并有可能使制造环境中的人机协作成为可能。然而,一个核心问题是,在这样的机器人的弯曲系统的结果在非最小相位动态和高增益(提高精度)可能会导致不稳定。此外,由于串联弹性致动器机器人中的大量摩擦非线性、间隙和接触相关效应,提高精度的精确建模可能具有挑战性。这项研究将填补基于数据的迭代机器学习方法的知识空白,以提高此类系统的精度。该研究将使用基于内核的学习方法的不确定性估计来制定迭代增益大小的条件,以保证收敛。 该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MIMO ILC using complex-kernel regression and application to Precision SEA robots
使用复杂内核回归的 MIMO ILC 及其在 Precision SEA 机器人中的应用
  • DOI:
    10.1016/j.automatica.2021.109550
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yan, Leon;Banka, Nathan;Owan, Parker;Piaskowy, Walter Tony;Garbini, Joseph L.;Devasia, Santosh
  • 通讯作者:
    Devasia, Santosh
Precision Data-enabled Koopman-type Inverse Operators for Linear Systems
线性系统的精确数据支持库普曼型逆算子
  • DOI:
    10.1016/j.ifacol.2022.11.181
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan, Leon;Devasia, Santosh
  • 通讯作者:
    Devasia, Santosh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Santosh Devasia其他文献

Active Anomaly Detection in Confined Spaces Using Ergodic Traversal of Directed Region Graphs
使用有向区域图的遍历遍历有限空间中的主动异常检测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Wong;Tyler M. Paine;Santosh Devasia;A. Banerjee
  • 通讯作者:
    A. Banerjee
Delayed Self-Reinforcement to Reduce Deformation During Decentralized Flexible-Object Transport
延迟自我强化以减少分散式柔性物体传输过程中的变形
  • DOI:
    10.1109/tro.2023.3343997
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Yoshua Gombo;Anuj Tiwari;Mohamed Safwat;Henry Chang;Santosh Devasia
  • 通讯作者:
    Santosh Devasia
Guest editorial: focused section on human-centered robotics
Redundant actuators to achieve minimal vibration trajectory tracking of flexible multibodies: Theory and application
  • DOI:
    10.1007/bf00045886
  • 发表时间:
    1994-12-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Santosh Devasia;Eduardo Bayo
  • 通讯作者:
    Eduardo Bayo
Output tracking with nonhyperbolic and near nonhyperbolic internal dynamics: helicopter hover control

Santosh Devasia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Santosh Devasia', 18)}}的其他基金

Advanced Composites Manufacturing and Repair Using Integrated Distributed Actuation and Dynamic Network Control
使用集成分布式驱动和动态网络控制的先进复合材料制造和修复
  • 批准号:
    1536306
  • 财政年份:
    2015
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
Boundary Regulation: Output-Recovery Guidance for Nonminimum Phase Systems
边界调节:非最小相位系统的输出恢复指南
  • 批准号:
    1301452
  • 财政年份:
    2013
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
NUE: Integrating Nanodevice Design, Fabrication, and Analysis into the Mechanical Engineering Curriculum
NUE:将纳米器件设计、制造和分析融入机械工程课程
  • 批准号:
    1042061
  • 财政年份:
    2010
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
Control of Distributed Nanosteppers
分布式纳米步进器的控制
  • 批准号:
    1000404
  • 财政年份:
    2010
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
Vibration Mitigation in Inchworm Nanopositioners for SPMs
SPM 的 Inchworm 纳米定位器的减振
  • 批准号:
    0856091
  • 财政年份:
    2009
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
Collaborative Project: Integration of Modeling and Control of Smart Actuators for Nano/Bio Technology into Mechanical Engineering Curriculum
合作项目:将纳米/生物技术智能执行器的建模和控制融入机械工程课程
  • 批准号:
    0632913
  • 财政年份:
    2007
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
Control of Micro/Nano Bio-mimetic Structures for Fluidic Devices
流体装置微/纳米仿生结构的控制
  • 批准号:
    0624597
  • 财政年份:
    2006
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Continuing Grant
Image-Based Control of Movement-Induced Vibration During High-Speed Operation of Scanning Probe Microscopes
扫描探针显微镜高速运行期间运动引起的振动的基于图像的控制
  • 批准号:
    0301787
  • 财政年份:
    2003
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
Vibration-Control of Nonlinear Piezo-Dynamics During Precision Position-Tracking Maneuvers
精密位置跟踪操纵过程中非线性压电动力学的振动控制
  • 批准号:
    0196214
  • 财政年份:
    2000
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
Vibration-Control of Nonlinear Piezo-Dynamics During Precision Position-Tracking Maneuvers
精密位置跟踪操纵过程中非线性压电动力学的振动控制
  • 批准号:
    9813080
  • 财政年份:
    1998
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Fast and Accurate Computational Method through Learning-based Iterative Alternating Optimization
通过基于学习的迭代交替优化开发快速准确的计算方法
  • 批准号:
    23K16953
  • 财政年份:
    2023
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CIF: Small: Efficient Model-Based Iterative Reconstruction For High Resolution CT
CIF:小型:基于模型的高效迭代重建高分辨率 CT
  • 批准号:
    2210866
  • 财政年份:
    2022
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
Investigating new approaches for narrowband but nevertheless high-precision wireless locating in multipath environments by means of iterative recursive non-linear state estimation techniques based on aperture synthesis and phase difference analysis in ant
基于ant中孔径合成和相位差分析的迭代递归非线性状态估计技术,研究多路径环境中窄带但高精度无线定位的新方法
  • 批准号:
    450697408
  • 财政年份:
    2021
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Research Grants
EAGER: (ST1) Collaborative Research: Exploring the emergence of peptide-based compartments through iterative machine learning, molecular modeling, and cell-free protein synthesis
EAGER:(ST1)协作研究:通过迭代机器学习、分子建模和无细胞蛋白质合成探索基于肽的隔室的出现
  • 批准号:
    1939463
  • 财政年份:
    2019
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
Quantitative T2* Relaxation and Field Inhomogeneity Mapping Using Multi-Echo Radial FLASH Magnetic Resonance Imaging and Model-based Iterative Reconstruction
使用多回波径向闪光磁共振成像和基于模型的迭代重建进行定量 T2* 弛豫和场不均匀性映射
  • 批准号:
    427934942
  • 财政年份:
    2019
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Research Grants
EAGER: (ST1) Collaborative Research: Exploring the emergence of peptide-based compartments through iterative machine learning, molecular modeling, and cell-free protein synthesis
EAGER:(ST1)协作研究:通过迭代机器学习、分子建模和无细胞蛋白质合成探索基于肽的隔室的出现
  • 批准号:
    1939534
  • 财政年份:
    2019
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Standard Grant
An iterative reconstruction algorithm for use in radar-based microwave imaging for breast cancer detection
用于乳腺癌检测的基于雷达的微波成像的迭代重建算法
  • 批准号:
    528851-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Iterative Redesign of a Multifaceted Implementation Strategy for a School-based Behavioral Skills Intervention
迭代重新设计校本行为技能干预的多方面实施策略
  • 批准号:
    10621642
  • 财政年份:
    2018
  • 资助金额:
    $ 37.93万
  • 项目类别:
Development of compressed sensing based iterative reconstruction for SPECT image
基于压缩感知的 SPECT 图像迭代重建的发展
  • 批准号:
    17K09069
  • 财政年份:
    2017
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of coronary artery calcium scoring in low-dose CT using model-based iterative reconstruction
使用基于模型的迭代重建在低剂量 CT 中建立冠状动脉钙评分
  • 批准号:
    16K10279
  • 财政年份:
    2016
  • 资助金额:
    $ 37.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了