Partial Hyperbolicity and the Structure of Diffeomorphism Groups

偏双曲性和微分同胚群的结构

基本信息

  • 批准号:
    0701018
  • 负责人:
  • 金额:
    $ 26.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

The proposed research extends two aspects of the principal investigator's previous research program in smooth dynamics. In the first, her work with collaborators has led recently to a proof of a "Boltzmann Ergodic Hypothesis" for partially hyperbolic systems: the typical conservative partially hyperbolic system is ergodic. In other recent work, the principal investigator and her collaborators have shown that typical conservative diffeomorphisms with minimal differentiability have trivial centralizers; that is, they have no smooth symmetries. The project has two main components: (1) extending the previous work of the principal investigator and her collaborators on the ergodicity of partially hyperbolic diffeomorphisms to a broader context, including dissipative systems and nonuniformly partially hyperbolic systems; (2) a study of the dynamical properties of smooth group actions on manifolds from the perspectives of genericity and rigidity. For one example, the principal investigator proposes to extend previous work with her collaborators in the conservative setting to show that the typical diffeomorphisms with minimal differentiability have trivial centralizers.In the past few decades, the topic of partially hyperbolic dynamical systems has emerged as one main direction in which the theory of complicated ("chaotic") dynamical systems has extended beyond the classical setting of hyperbolic dynamics. This research has been driven in part by the realization that many practical applications of dynamical systems to experimental phenomena require a much broader theory. In a parallel development, the typical (or generic) properties of smooth systems have begun to emerge, as increasingly sophisticated perturbation techniques have been developed. The principal investigator's research over the last decade has focused on the fundamental qualitative features -- e.g., ergodicity (statistical "chaos"), lack of symmetries, and other hallmarks of orbit complexity -- that might be displayed by a typical smooth dynamical system. The proposed research will make foundational advances in understanding when to expect chaos in a given family of systems, such as those that arise in practice in predicting global weather patterns or the trajectories of extraterrestrial bodies. The material resulting from this research proposal will be widely disseminated, through talks at conferences, online preprint servers, and publication in scholarly journals. A significant component of this grant is devoted to graduate-student training on the Ph.D. level.
拟议的研究扩展了两个方面的主要研究者以前的研究计划在光滑动力学。在第一,她的工作与合作者最近导致了一个证明的“玻尔兹曼遍历假设”的部分双曲系统:典型的保守部分双曲系统是遍历的。 在其他最近的工作中,主要研究者和她的合作者已经证明了具有最小可微性的典型保守非同态具有平凡中心化子;也就是说,它们没有光滑对称性。该项目有两个主要组成部分:(1)将首席研究员及其合作者先前关于部分双曲型同构遍历性的工作扩展到更广泛的背景,包括耗散系统和非一致部分双曲系统;(2)从泛型和刚性的角度研究流形上光滑群作用的动力学性质。例如,主要研究者建议在保守环境下扩展她与合作者的先前工作,以证明具有最小可微性的典型双曲同态具有平凡的中心化子。在过去的几十年中,部分双曲动力系统的主题已经成为复杂(“混沌”)动力系统理论扩展到经典双曲动力学环境之外的一个主要方向。这项研究的部分驱动力来自于这样一种认识,即动力系统在实验现象中的许多实际应用需要更广泛的理论。在一个平行的发展,光滑系统的典型(或通用)属性已经开始出现,作为日益复杂的扰动技术已经开发。首席研究员在过去十年的研究集中在基本的定性特征上--例如,遍历性(统计“混沌”),缺乏对称性,以及轨道复杂性的其他标志--这可能由一个典型的光滑动力系统所表现出来。拟议中的研究将在理解特定系统家族中何时出现混乱方面取得基础性进展,例如在预测全球天气模式或外星物体轨迹的实践中出现的混乱。从这项研究计划中产生的材料将通过会议上的演讲,在线预印本服务器和学术期刊上的出版物广泛传播。 这笔赠款的一个重要组成部分是专门用于博士研究生培训。水平

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Wilkinson其他文献

The Effectiveness of a Tailored Faculty Development Program for Undergraduate Mentoring and Its Impact on Mentor’s Perceptions: A Mixed Methods Study
本科生导师定制教师发展计划的有效性及其对导师看法的影响:混合方法研究
  • DOI:
    10.7759/cureus.58863
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smita Pakhmode;Yamini V. Pusdekar;Madhur Gupta;Anne Wilkinson;S. Uppu;Sheel Wasnik
  • 通讯作者:
    Sheel Wasnik
How Graduate Interior Design Programs Prepare Emerging Educators to Teach
室内设计研究生课程如何为新兴教育工作者做好教学准备
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Wilkinson
  • 通讯作者:
    Anne Wilkinson
The Histopathological Spectrum of Scrotal Lesions in a Tertiary Care Hospital: A Cross-Sectional Study
三级医院阴囊病变的组织病理学谱:横断面研究
  • DOI:
    10.7759/cureus.52767
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Apara Desai;Anne Wilkinson
  • 通讯作者:
    Anne Wilkinson
Palliative Care Nursing
姑息治疗护理
  • DOI:
    10.1891/9780826127198.0001
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Wilkinson;Deborah Witt Sherman;Tonie Metheny;M. Matzo
  • 通讯作者:
    M. Matzo
Capitated Risk‐Bearing Managed Care Systems Could Improve End‐of‐Life Care
按人头承担风险的管理式医疗系统可以改善临终关怀
  • DOI:
    10.1111/j.1532-5415.1998.tb01047.x
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Joanne Lynn;Anne Wilkinson;F. Cohn;Stanley B. Jones
  • 通讯作者:
    Stanley B. Jones

Anne Wilkinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Wilkinson', 18)}}的其他基金

Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
  • 批准号:
    2154796
  • 财政年份:
    2022
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Standard Grant
Ergodicity, Rigidity, and the Interplay Between Chaotic and Regular Dynamics
遍历性、刚性以及混沌动力学和规则动力学之间的相互作用
  • 批准号:
    1900411
  • 财政年份:
    2019
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Standard Grant
INSTABILITIES IN DYNAMICAL SYSTEMS
动态系统的不稳定性
  • 批准号:
    1500897
  • 财政年份:
    2015
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Standard Grant
Robust and generic mechanisms in smooth dynamics
平稳动力学中稳健且通用的机制
  • 批准号:
    1402852
  • 财政年份:
    2014
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Continuing Grant
Conference "From Dynamics to Complexity"
“从动态到复杂性”会议
  • 批准号:
    1201398
  • 财政年份:
    2012
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Standard Grant
Partial hyperbolicity and rigidity
部分双曲性和刚性
  • 批准号:
    1316534
  • 财政年份:
    2012
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Continuing Grant
Partial hyperbolicity and rigidity
部分双曲性和刚性
  • 批准号:
    1001727
  • 财政年份:
    2010
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Continuing Grant
International Workshop on Global Dynamics beyond Uniform Hyperbolicity
超越统一双曲性的全球动力学国际研讨会
  • 批准号:
    0552282
  • 财政年份:
    2006
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Standard Grant
Partial Hyperbolicity and Rigidity
部分双曲性和刚性
  • 批准号:
    0401326
  • 财政年份:
    2005
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Continuing Grant
Conference on Robustness and Partial Hyperbolicity
鲁棒性和部分双曲性会议
  • 批准号:
    0335551
  • 财政年份:
    2003
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Standard Grant

相似海外基金

Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2896389
  • 财政年份:
    2023
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Studentship
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2785744
  • 财政年份:
    2023
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Studentship
Hyperbolicity of Finitely Generated Groups
有限生成群的双曲性
  • 批准号:
    2742050
  • 财政年份:
    2022
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Studentship
Algebraic Hyperbolicity and Lang Conjecture
代数双曲性和 Lang 猜想
  • 批准号:
    RGPIN-2019-04775
  • 财政年份:
    2022
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Discovery Grants Program - Individual
Hyperbolicity with Singularities and Coexistence via Smoothing
双曲性与奇点以及通过平滑的共存
  • 批准号:
    2154378
  • 财政年份:
    2022
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Standard Grant
Algebraic Hyperbolicity and Lang Conjecture
代数双曲性和 Lang 猜想
  • 批准号:
    RGPIN-2019-04775
  • 财政年份:
    2021
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
  • 批准号:
    2054960
  • 财政年份:
    2021
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Standard Grant
Generalizations of hyperbolicity
双曲性的概括
  • 批准号:
    564135-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 26.04万
  • 项目类别:
    University Undergraduate Student Research Awards
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2021
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Discovery Grants Program - Individual
Beyond Hyperbolicity at the Ohio State University
俄亥俄州立大学的超越双曲性
  • 批准号:
    2000885
  • 财政年份:
    2020
  • 资助金额:
    $ 26.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了