Robust and generic mechanisms in smooth dynamics

平稳动力学中稳健且通用的机制

基本信息

  • 批准号:
    1402852
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

The PI is a leading expert in the field of partially hyperbolic dynamics; dynamics is the study of systems, physical or mathematical, that evolve over time according to a deterministic set of rules. Hyperbolic dynamical systems are those which display chaotic, unpredictable features at every point; they are both naturally occurring and well-studied. There are other dynamical systems called KAM systems (named after Kolomogorov, Arnold, and Moser), which have stable regions of regular motion. Partially hyperbolic systems provide a more general class of dynamical systems than either, and include systems that combine hyperbolicity in some directions with KAM behavior in other directions. Partially hyperbolic systems occur widely in dynamical systems arising in physics; for example planetary motion usually contains partially hyperbolic subdynamics, and the effective construction of particle accelerators (used in biological imaging, as well as theoretical physics) requires a detailed understanding of both KAM and partially hyperbolic dynamics. The PI has a well-developed research plan of over 15 years studying partially hyperbolic systems and is poised to raise the theory of these systems to a new level of generality and applicability. The impacts of this research will be seen in future applications to systems in biology, physics and engineering. The PI is currently collaborating with the particle accelerator group at Fermilab to explore some of these potential applications.The research supported by this grant is guided by the far-reaching goal of developing a general theory of partially hyperbolic systems along the lines of the hyperbolic theory developed in the past 40 years. In particular the PI proposes to study: ergodic properties of conservative partially hyperbolic diffeomorphisms; physical measures for (dissipative) partially hyperbolic diffeomorphisms; rigidity phenomena connected to partially hyperbolic group actions; and ergodicty of singular partially hyperbolic systems. These research goals will be carried out through a variety of modalities, including published papers in peer-reviewed journals, supervising Ph.D. students, and public speaking, both at research conferences and to the general public.
PI是部分双曲动力学领域的领先专家;动力学是对系统的研究,物理或数学,随着时间的推移,根据一组确定性的规则演变。 双曲动力系统是那些在每一点上都表现出混乱、不可预测的特征的系统;它们是自然发生的,也是经过充分研究的。 还有其他的动力系统称为KAM系统(以Kolomogorov,Arnold和Moser命名),它们具有规则运动的稳定区域。 部分双曲系统提供了一个更一般的一类动力系统,比任何一个,并包括系统,联合收割机在某些方向上的双曲性与KAM行为在其他方向上。 部分双曲系统广泛存在于物理学中的动力学系统中;例如行星运动通常包含部分双曲子动力学,而粒子加速器(用于生物成像和理论物理)的有效构建需要对KAM和部分双曲动力学的详细理解。PI有一个超过15年的研究部分双曲系统的成熟研究计划,并准备将这些系统的理论提高到一个新的通用性和适用性水平。这项研究的影响将在未来应用于生物学,物理学和工程学系统中。 PI目前正在与费米实验室的粒子加速器小组合作,探索其中的一些潜在应用。这项资助支持的研究的深远目标是沿着过去40年发展的双曲理论的路线发展部分双曲系统的一般理论。特别是PI建议研究:遍历性的保守部分双曲同态;物理措施(耗散)部分双曲同态;刚性现象连接到部分双曲群行动;和遍历性的奇异部分双曲系统。 这些研究目标将通过各种方式进行,包括在同行评审期刊上发表论文,指导博士学位。学生,和公开演讲,无论是在研究会议和公众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Wilkinson其他文献

The Effectiveness of a Tailored Faculty Development Program for Undergraduate Mentoring and Its Impact on Mentor’s Perceptions: A Mixed Methods Study
本科生导师定制教师发展计划的有效性及其对导师看法的影响:混合方法研究
  • DOI:
    10.7759/cureus.58863
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smita Pakhmode;Yamini V. Pusdekar;Madhur Gupta;Anne Wilkinson;S. Uppu;Sheel Wasnik
  • 通讯作者:
    Sheel Wasnik
How Graduate Interior Design Programs Prepare Emerging Educators to Teach
室内设计研究生课程如何为新兴教育工作者做好教学准备
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Wilkinson
  • 通讯作者:
    Anne Wilkinson
Palliative Care Nursing
姑息治疗护理
  • DOI:
    10.1891/9780826127198.0001
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Wilkinson;Deborah Witt Sherman;Tonie Metheny;M. Matzo
  • 通讯作者:
    M. Matzo
The Histopathological Spectrum of Scrotal Lesions in a Tertiary Care Hospital: A Cross-Sectional Study
三级医院阴囊病变的组织病理学谱:横断面研究
  • DOI:
    10.7759/cureus.52767
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Apara Desai;Anne Wilkinson
  • 通讯作者:
    Anne Wilkinson
Financing of care for fatal chronic disease: opportunities for Medicare reform.
致命慢性病护理的融资:医疗保险改革的机会。
  • DOI:
    10.1136/ewjm.175.5.299
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Lynn;Anne Wilkinson;L. Etheredge
  • 通讯作者:
    L. Etheredge

Anne Wilkinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Wilkinson', 18)}}的其他基金

Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
  • 批准号:
    2154796
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Ergodicity, Rigidity, and the Interplay Between Chaotic and Regular Dynamics
遍历性、刚性以及混沌动力学和规则动力学之间的相互作用
  • 批准号:
    1900411
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
INSTABILITIES IN DYNAMICAL SYSTEMS
动态系统的不稳定性
  • 批准号:
    1500897
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Partial hyperbolicity and rigidity
部分双曲性和刚性
  • 批准号:
    1316534
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Conference "From Dynamics to Complexity"
“从动态到复杂性”会议
  • 批准号:
    1201398
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Partial hyperbolicity and rigidity
部分双曲性和刚性
  • 批准号:
    1001727
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Partial Hyperbolicity and the Structure of Diffeomorphism Groups
偏双曲性和微分同胚群的结构
  • 批准号:
    0701018
  • 财政年份:
    2007
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
International Workshop on Global Dynamics beyond Uniform Hyperbolicity
超越统一双曲性的全球动力学国际研讨会
  • 批准号:
    0552282
  • 财政年份:
    2006
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Partial Hyperbolicity and Rigidity
部分双曲性和刚性
  • 批准号:
    0401326
  • 财政年份:
    2005
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Conference on Robustness and Partial Hyperbolicity
鲁棒性和部分双曲性会议
  • 批准号:
    0335551
  • 财政年份:
    2003
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

Hecke-Clifford 代数及其表示
  • 批准号:
    11101031
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
关于权投射线上凝聚层范畴的研究
  • 批准号:
    10926041
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
约化群GL(n, F)的表示--F是非阿基米德局部域
  • 批准号:
    10701034
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mining the phage playbook to create a potent, generic phage therapy
挖掘噬菌体剧本以创建有效的通用噬菌体疗法
  • 批准号:
    10723647
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
From atoms to mechanisms - Artificial Intelligence augmented molecular simulations for mechanistic ligand design
从原子到机制 - 人工智能增强机械配体设计的分子模拟
  • 批准号:
    10275014
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
From atoms to mechanisms - Artificial Intelligence augmented molecular simulations for mechanistic ligand design
从原子到机制 - 人工智能增强机械配体设计的分子模拟
  • 批准号:
    10683387
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
From atoms to mechanisms - Artificial Intelligence augmented molecular simulations for mechanistic ligand design
从原子到机制 - 人工智能增强机械配体设计的分子模拟
  • 批准号:
    10490317
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
Generic mechanisms for spatiotemporal protein patterns in bacterial cells (P03)
细菌细胞中时空蛋白质模式的通用机制(P03)
  • 批准号:
    326464031
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    CRC/Transregios
Anticonvulsant screening using chronic epilepsy models
使用慢性癫痫模型进行抗惊厥筛查
  • 批准号:
    9316238
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
Dyrk Inhibitors for Human Beta Cell Expansion
Dyrk 人类 β 细胞扩增抑制剂
  • 批准号:
    9100078
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
Dyrk Inhibitors for Human Beta Cell Expansion
Dyrk 人类 β 细胞扩增抑制剂
  • 批准号:
    9225196
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
Neural Mechanisms of Saccade Initiation
眼跳启动的神经机制
  • 批准号:
    8839478
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
Molecular mechanisms of direct neuronal programming
直接神经元编程的分子机制
  • 批准号:
    8845575
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了