INSTABILITIES IN DYNAMICAL SYSTEMS
动态系统的不稳定性
基本信息
- 批准号:1500897
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project instabilities in dynamical systems will be studied. In dynamical systems the way in which a system obeying some fixed rules evolves over time is studied. The long term behavior of a deterministic dynamical system may be chaotic and unpredictable. Such behavior is termed "instability". An example is the well-known butterfly effect, where there is a sensitive dependence on the initial conditions in which a small change of the initial state of a system may lead to huge differences in later states. The proposed research will study instabilities of systems arising in classical mechanics and general relativity. The goal is to understand how the instability occurs and to quantify its properties. Another goal is to discover unknown phenomena based on a new understanding of instability mechanisms.The proposed projects fall into the following three different fields. The first project is to study Hamiltonian systems using symplectic methods. This will be a continuation of previous work. It includes finding periodic orbits and homoclinic or heteroclinic orbits satisfying certain topological constraints in non-convex Hamiltonian systems. The next project is to try to use the methods of proving Arnold diffusion to study systems in general relativity. The interest is in showing Arnold diffusion in a perturbed Kerr-de Sitter metric and the physical meaning of Arnold diffusion in this setting is the Penrose process for energy and angular momentum extraction from black hole. In the last project the PI and his collaborators will use a general dynamical system without Hamiltonian structure to produce positive Lyapunov exponents in concrete systems with the help of small random perturbations. In particular, for two dimensions the methods show positive Lyapunov exponents for a randomly perturbed standard map.
在这个项目中,将研究动力系统中的不稳定性。 在动力系统中,人们研究的是一个遵循某些固定规则的系统随时间演化的方式。确定性动力系统的长期行为可能是混沌的和不可预测的。 这种行为被称为“不稳定性”。一个例子是众所周知的蝴蝶效应,其中存在对初始条件的敏感依赖性,其中系统初始状态的微小变化可能导致后期状态的巨大差异。 拟议的研究将研究经典力学和广义相对论中出现的系统的不稳定性。我们的目标是了解不稳定性是如何发生的,并量化其属性。另一个目标是基于对不稳定性机制的新理解来发现未知现象。 第一个项目是用辛方法研究哈密顿系统。这将是之前工作的延续。 它包括在非凸Hamilton系统中寻找周期轨道和满足一定拓扑约束的同宿或异宿轨道。 下一个项目是尝试使用证明Arnold扩散的方法来研究广义相对论中的系统。 我们的兴趣是在显示Arnold扩散扰动Kerr-de Sitter度规和Arnold扩散的物理意义,在这种设置是从黑洞的能量和角动量提取的彭罗斯过程。在最后一个项目中,PI和他的合作者将使用一个没有Hamilton结构的一般动力系统,在小的随机扰动的帮助下,在具体系统中产生正的Lyapunov指数。 特别是,对于两个维度的随机扰动的标准映射的方法显示出积极的李雅普诺夫指数。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lyapunov exponents for random perturbations of some area-preserving maps including the standard map
- DOI:10.4007/annals.2017.185.1.5
- 发表时间:2017-01-01
- 期刊:
- 影响因子:4.9
- 作者:Blumenthal, Alex;Xue, Jinxin;Young, Lai-Sang
- 通讯作者:Young, Lai-Sang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Wilkinson其他文献
The Effectiveness of a Tailored Faculty Development Program for Undergraduate Mentoring and Its Impact on Mentor’s Perceptions: A Mixed Methods Study
本科生导师定制教师发展计划的有效性及其对导师看法的影响:混合方法研究
- DOI:
10.7759/cureus.58863 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Smita Pakhmode;Yamini V. Pusdekar;Madhur Gupta;Anne Wilkinson;S. Uppu;Sheel Wasnik - 通讯作者:
Sheel Wasnik
How Graduate Interior Design Programs Prepare Emerging Educators to Teach
室内设计研究生课程如何为新兴教育工作者做好教学准备
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Anne Wilkinson - 通讯作者:
Anne Wilkinson
The Histopathological Spectrum of Scrotal Lesions in a Tertiary Care Hospital: A Cross-Sectional Study
三级医院阴囊病变的组织病理学谱:横断面研究
- DOI:
10.7759/cureus.52767 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Apara Desai;Anne Wilkinson - 通讯作者:
Anne Wilkinson
Palliative Care Nursing
姑息治疗护理
- DOI:
10.1891/9780826127198.0001 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Anne Wilkinson;Deborah Witt Sherman;Tonie Metheny;M. Matzo - 通讯作者:
M. Matzo
Capitated Risk‐Bearing Managed Care Systems Could Improve End‐of‐Life Care
按人头承担风险的管理式医疗系统可以改善临终关怀
- DOI:
10.1111/j.1532-5415.1998.tb01047.x - 发表时间:
1998 - 期刊:
- 影响因子:6.3
- 作者:
Joanne Lynn;Anne Wilkinson;F. Cohn;Stanley B. Jones - 通讯作者:
Stanley B. Jones
Anne Wilkinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Wilkinson', 18)}}的其他基金
Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
- 批准号:
2154796 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Ergodicity, Rigidity, and the Interplay Between Chaotic and Regular Dynamics
遍历性、刚性以及混沌动力学和规则动力学之间的相互作用
- 批准号:
1900411 - 财政年份:2019
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Robust and generic mechanisms in smooth dynamics
平稳动力学中稳健且通用的机制
- 批准号:
1402852 - 财政年份:2014
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Conference "From Dynamics to Complexity"
“从动态到复杂性”会议
- 批准号:
1201398 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Partial Hyperbolicity and the Structure of Diffeomorphism Groups
偏双曲性和微分同胚群的结构
- 批准号:
0701018 - 财政年份:2007
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
International Workshop on Global Dynamics beyond Uniform Hyperbolicity
超越统一双曲性的全球动力学国际研讨会
- 批准号:
0552282 - 财政年份:2006
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Conference on Robustness and Partial Hyperbolicity
鲁棒性和部分双曲性会议
- 批准号:
0335551 - 财政年份:2003
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
- 批准号:
2349508 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Dynamical Systems with a View towards Applications
着眼于应用的动力系统
- 批准号:
2350184 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Conference: Dynamical Systems and Fractal Geometry
会议:动力系统和分形几何
- 批准号:
2402022 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Making Upper Division Mathematics Courses More Relevant for Future High School Teachers: The Case of Inquiry-Oriented Dynamical Systems and Modeling
使高年级数学课程与未来高中教师更相关:以探究为导向的动力系统和建模案例
- 批准号:
2337047 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant














{{item.name}}会员




