Combinatorial Structures in Holomorphic Dynamical Systems

全纯动力系统中的组合结构

基本信息

  • 批准号:
    0701557
  • 负责人:
  • 金额:
    $ 10.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with several problems at the interface between holomorphic dynamics, geometric group theory, and combinatorics. Its goal is to obtain a deeper understanding than currently exists of combinatorial structures that arise in dynamical problems and to use this information in the enhancement of known analytical results. The project involves research on the following topics: the structure of iterated monodromy groups (in particular, their growth and spectral properties); the development of a puzzle technique for Julia sets in the Devaney family of rational maps, with a view towards establishing the local connectivity of its connectivity locus; and recursive properties of the linearizing map of quadratic Siegel disks.The objects of study in dynamical systems have very complicated (fractal) structures that require detailed combinatorial descriptions. Not only are these descriptions a prerequisite for tackling hard dynamical problems, but they also serve the purpose of exposing connections between dynamics and other areas of mathematics, as well as between dynamics and other sciences. The proposed research will focus on three such structures, linking holomorphic dynamical systems to geometric group theory and combinatorics.
本项目涉及全纯动力学、几何群论和组合学之间的几个问题。它的目标是获得比目前存在的动力问题中出现的组合结构更深入的理解,并利用这些信息来增强已知的分析结果。该项目涉及以下主题的研究:迭代单胞群的结构(特别是它们的生长和光谱特性);开发了有理映射Devaney族中Julia集合的解谜技术,旨在建立其连通性轨迹的局部连通性;二次西格尔盘线性化映射的递推性质。动力系统的研究对象具有非常复杂的(分形)结构,需要详细的组合描述。这些描述不仅是解决复杂动力学问题的先决条件,而且还有助于揭示动力学与其他数学领域以及动力学与其他科学之间的联系。提出的研究将集中在三个这样的结构上,将全纯动力系统与几何群论和组合学联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rodrigo Perez其他文献

International consensus recommendations on key outcome measures for organ preservation after (chemo)radiotherapy in patients with rectal cancer
关于直肠癌患者(放)化疗后器官保存关键结局指标的国际共识建议
  • DOI:
    10.1038/s41571-021-00538-5
  • 发表时间:
    2021-08-04
  • 期刊:
  • 影响因子:
    82.200
  • 作者:
    Emmanouil Fokas;Ane Appelt;Robert Glynne-Jones;Geerard Beets;Rodrigo Perez;Julio Garcia-Aguilar;Eric Rullier;J. Joshua Smith;Corrie Marijnen;Femke P. Peters;Maxine van der Valk;Regina Beets-Tan;Arthur S. Myint;Jean-Pierre Gerard;Simon P. Bach;Michael Ghadimi;Ralf D. Hofheinz;Krzysztof Bujko;Cihan Gani;Karin Haustermans;Bruce D. Minsky;Ethan Ludmir;Nicholas P. West;Maria A. Gambacorta;Vincenzo Valentini;Marc Buyse;Andrew G. Renehan;Alexandra Gilbert;David Sebag-Montefiore;Claus Rödel
  • 通讯作者:
    Claus Rödel
Should watch and wait be offered to rectal cancer patients younger than 50 years after a clinical complete response?
  • DOI:
    10.1016/j.ejso.2021.12.440
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Renu Bahadoer;Koen Peeters;Geerard Beets;Nuno Figueiredo;Esther Bastiaannet;Alexander Vahrmeijer;Sofieke Temmink;Elma Meershoek-Klein Kranenbarg;Annet Roodvoets;Angelita Habr-Gama;Rodrigo Perez;Cornelis van de Velde;Denise Hilling
  • 通讯作者:
    Denise Hilling
Continence changes following transanal endoscopic microsurgery result from the impact on rectal capacity: clinical and functional evaluation before and after surgical treatment
  • DOI:
    10.1016/j.jcol.2018.05.005
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carlos Ramon Silveira Mendes;Sergio Eduardo Alonso Araujo;Rodrigo Perez;Ivan Cecconello;Luiz Augusto Carneiro DÁlbuquerque
  • 通讯作者:
    Luiz Augusto Carneiro DÁlbuquerque
Risk of distant metastasis after local excision for near-complete response versus salvage surgery for local regrowth in rectal cancer: Results from an international registry
直肠癌近完全缓解后局部切除与局部复发后挽救性手术的远处转移风险:一项国际注册研究的结果
  • DOI:
    10.1016/j.ejso.2025.109761
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Constance Jehaes;Yves Panis;Laura Fernandez;Bernard Lelong;Guilherme Sao Julião;Bruna Vailati;Jeremie H. Lefevre;Jean-Jacques Tuech;José Azevedo;Stéphane Benoist;Amjad Parvaiz;Mege Diane;Angelita Habr- Gama;Rodrigo Perez;Quentin Denost;GRECCAR Group
  • 通讯作者:
    GRECCAR Group
The development of a novel tool for rectal cancer patients in the watch-and-wait program: An international Delphi exercise
  • DOI:
    10.1016/j.ejso.2022.11.121
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Pennings;Merel Kimman;Andrew Renehan;Rodrigo Perez;Jose Azevedo;Laura Fernandez;Geerard Beets;Jarno Melenhorst;Stephanie Breukink
  • 通讯作者:
    Stephanie Breukink

Rodrigo Perez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rodrigo Perez', 18)}}的其他基金

U.S.-Mexico Workshop: Holomorphic Dynamics on the Riemann Sphere; May 23-26, 2007, Zacatecas, Mexico
美国-墨西哥研讨会:黎曼球上的全纯动力学;
  • 批准号:
    0715285
  • 财政年份:
    2007
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202519
  • 财政年份:
    2002
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Fellowship Award

相似海外基金

Geometry and Dynamics of Holomorphic Geometric Structures
全纯几何结构的几何与动力学
  • 批准号:
    2203358
  • 财政年份:
    2022
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Differential geometry of holomorphic vector bundles with Rizza structures and it applications
Rizza结构全纯向量丛的微分几何及其应用
  • 批准号:
    16K05135
  • 财政年份:
    2016
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Holomorphic Poisson structures
全纯泊松结构
  • 批准号:
    EP/K033654/1
  • 财政年份:
    2014
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Research Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    1047602
  • 财政年份:
    2010
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Quantization, complex structures, and spaces of holomorphic functions
量子化、复数结构和全纯函数空间
  • 批准号:
    1001328
  • 财政年份:
    2010
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Research on knot theory using contact structures and holomorphic curves
基于接触结构和全纯曲线的纽结理论研究
  • 批准号:
    21740041
  • 财政年份:
    2009
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies on Floer thoery, theory of holomorphic curves and symplectic structures, contact structures
弗洛尔理论、全纯曲线理论和辛结构、接触结构研究
  • 批准号:
    21244002
  • 财政年份:
    2009
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    0603957
  • 财政年份:
    2006
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Extension property of holomorphic maps and complex structures of the target manifolds
全纯映射的可拓性质和目标流形的复杂结构
  • 批准号:
    17540094
  • 财政年份:
    2005
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Structures in Holomorphic Dynamics and Teichmuller Theory
全纯动力学中的几何结构和 Teichmuller 理论
  • 批准号:
    0505652
  • 财政年份:
    2005
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了